Talleyknowles7733

Z Iurium Wiki

Verze z 23. 9. 2024, 21:58, kterou vytvořil Talleyknowles7733 (diskuse | příspěvky) (Založena nová stránka s textem „Deep learning has great potential for accurate detection and classification of diseases with medical imaging data, but the performance is often limited by…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Deep learning has great potential for accurate detection and classification of diseases with medical imaging data, but the performance is often limited by the number of training datasets and memory requirements. In addition, many deep learning models are considered a ``black-box," thereby often limiting their adoption in clinical applications. To address this, we present a successive subspace learning model, termed VoxelHop, for accurate classification of Amyotrophic Lateral Sclerosis (ALS) using T2-weighted structural MRI data. Compared with popular convolutional neural network (CNN) architectures, VoxelHop has modular and transparent structures with fewer parameters without any backpropagation, so is well-suited to small dataset size and 3D volume data. Our VoxelHop has four key components, including (1) sequential expansion of near-to-far neighborhood for multi-channel 3D data; (2) subspace approximation for unsupervised dimension reduction; (3) label-assisted regression for supervised dimension reduction; and (4) concatenation of features and classification between controls and patients. Our experimental results demonstrate that our framework using a total of 20 controls and 26 patients achieves an accuracy of 93.48 % and an AUC score of 0.9394 in differentiating patients from controls, even with a relatively small number of datasets, showing its robustness and effectiveness. Our thorough evaluations also show its validity and superiority to the state-of-the-art 3D CNN classification methods. Our framework can easily be generalized to other classification tasks using different modalities.It is widely acknowledged that biological intelligence is capable of learning continually without forgetting previously learned skills. Unfortunately, it has been widely observed that many artificial intelligence techniques, especially (deep) neural network (NN)-based ones, suffer from catastrophic forgetting problem, which severely forgets previous tasks when learning a new one. How to train NNs without catastrophic forgetting, which is termed continual learning, is emerging as a frontier topic and attracting considerable research interest. Inspired by memory replay and synaptic consolidation mechanism in brain, in this article, we propose a novel and simple framework termed memory recall (MeRec) for continual learning with deep NNs. In particular, we first analyze the feature stability across tasks in NN and show that NN can yield task stable features in certain layers. Then, based on this observation, we use a memory module to keep the feature statistics (mean and std) for each learned task. Based on the memory and statistics, we show that a simple replay strategy with Gaussian distribution-based feature regeneration can recall and recover the knowledge from previous tasks. Together with the weight regularization, MeRec preserves weights learned from previous tasks. Based on this simple framework, MeRec achieved leading performance with extremely small memory budget (only two feature vectors for each class) for continual learning on CIFAR-10 and CIFAR-100 datasets, with at least 50% accuracy drop reduction after several tasks compared to previous state-of-the-art approaches.We study the challenging task of malware recognition on both known and novel unknown malware families, called malware open-set recognition (MOSR). Previous works usually assume the malware families are known to the classifier in a close-set scenario, i.e., testing families are the subset or at most identical to training families. However, novel unknown malware families frequently emerge in real-world applications, and as such, require recognizing malware instances in an open-set scenario, i.e., some unknown families are also included in the test set, which has been rarely and nonthoroughly investigated in the cyber-security domain. One practical solution for MOSR may consider jointly classifying known and detecting unknown malware families by a single classifier (e.g., neural network) from the variance of the predicted probability distribution on known families. However, conventional well-trained classifiers usually tend to obtain overly high recognition probabilities in the outputs, especially when the instaalware dataset, named MAL-100, to fill the gap of lacking a large open-set malware benchmark dataset. Experimental results on two widely used malware datasets and our MAL-100 demonstrate the effectiveness of our model compared with other representative methods.We present the phylogenetic quartet reconstruction method SAQ (Semi-Algebraic Quartet reconstruction). SAQ is consistent with the most general Markov model of nucleotide substitution and, in particular, it allows for rate heterogeneity across lineages. Based on the algebraic and semi-algebraic description of distributions that arise from the general Markov model on a quartet, the method outputs normalized weights for the three trivalent quartets (which can be used as input of quartet-based methods). We show that SAQ is a highly competitive method that outperforms most of the well known reconstruction methods on data simulated under the general Markov model on 4-taxon trees. Moreover, it also achieves a high performance on data that violates the underlying assumptions.We introduce an ML-driven approach that enables interactive example-based queries for similar behavior in ensembles of spatiotemporal scientific data. This addresses an important use case in the visual exploration of simulation and experimental data, where data is often large, unlabeled and has no meaningful similarity measures available. We exploit the fact that nearby locations often exhibit similar behavior and train a Siamese Neural Network in a self-supervised fashion, learning an expressive latent space for spatiotemporal behavior. This space can be used to find similar behavior with just a few user-provided examples. We evaluate this approach on several ensemble datasets and compare with multiple existing methods, showing both qualitative and quantitative results.Denoising and demosaicking are essential yet correlated steps to reconstruct a full color image from the raw color filter array (CFA) data. By learning a deep convolutional neural network (CNN), significant progress has been achieved to perform denoising and demosaicking jointly. However, most existing CNN-based joint denoising and demosaicking (JDD) methods work on a single image while assuming additive white Gaussian noise, which limits their performance on real-world applications. In this work, we study the JDD problem for real-world burst images, namely JDD-B. Considering the fact that the green channel has twice the sampling rate and better quality than the red and blue channels in CFA raw data, we propose to use this green channel prior (GCP) to build a GCP-Net for the JDD-B task. In GCP-Net, the GCP features extracted from green channels are utilized to guide the feature extraction and feature upsampling of the whole image. To compensate for the shift between frames, the offset is also estimated from GCP features to reduce the impact of noise. Our GCP-Net can preserve more image structures and details than other JDD methods while removing noise. Experiments on synthetic and real-world noisy images demonstrate the effectiveness of GCP-Net quantitatively and qualitatively.This paper investigates adaptive streaming of one or multiple tiled 360 videos from a multi-antenna base station (BS) to one or multiple single-antenna users, respectively, in a multi-carrier wireless system. We aim to maximize the video quality while keeping rebuffering time small via encoding rate adaptation at each group of pictures (GOP) and transmission adaptation at each (transmission) slot. To capture the impact of field-of-view (FoV) prediction, we consider three cases of FoV viewing probability distributions, i.e., perfect, imperfect, and unknown FoV viewing probability distributions, and use the average total utility, worst average total utility, and worst total utility as the respective performance metrics. In the single-user scenario, we optimize the encoding rates of the tiles, encoding rates of the FoVs, and transmission beamforming vectors for all subcarriers to maximize the total utility in each case. In the multi-user scenario, we adopt rate splitting with successive decoding and optimize the encoding rates of the tiles, encoding rates of the FoVs, rates of the common and private messages, and transmission beamforming vectors for all subcarriers to maximize the total utility in each case. Then, we separate the challenging optimization problem into multiple tractable problems in each scenario. In the single-user scenario, we obtain a globally optimal solution of each problem using transformation techniques and the Karush-Kuhn-Tucker (KKT) conditions. In the multi-user scenario, we obtain a KKT point of each problem using the concave-convex procedure (CCCP). Finally, numerical results demonstrate that the proposed solutions achieve notable gains in quality, quality variation, and rebuffering time over existing schemes in all three cases. To the best of our knowledge, this is the first work revealing the impact of FoV prediction on the performance of adaptive streaming of tiled 360 videos.State-of-the-art two-stage object detectors apply a classifier to a sparse set of object proposals, relying on region-wise features extracted by RoIPool or RoIAlign as inputs. The region-wise features, in spite of aligning well with the proposal locations, may still lack the crucial context information which is necessary for filtering out noisy background detections, as well as recognizing objects possessing no distinctive appearances. To address this issue, we present a simple but effective Hierarchical Context Embedding (HCE) framework, which can be applied as a plug-and-play component, to facilitate the classification ability of a series of region-based detectors by mining contextual cues. Specifically, to advance the recognition of context-dependent object categories, we propose an image-level categorical embedding module which leverages the holistic image-level context to learn object-level concepts. Then, novel RoI features are generated by exploiting hierarchically embedded context information beneath both whole images and interested regions, which are also complementary to conventional RoI features. GSK3326595 Moreover, to make full use of our hierarchical contextual RoI features, we propose the early-and-late fusion strategies (i.e., feature fusion and confidence fusion), which can be combined to boost the classification accuracy of region-based detectors. Comprehensive experiments demonstrate that our HCE framework is flexible and generalizable, leading to significant and consistent improvements upon various region-based detectors, including FPN, Cascade R-CNN, Mask R-CNN and PA-FPN. With simple modification, our HCE framework can be conveniently adapted to fit the structure of one-stage detectors, and achieve improved performance for SSD, RetinaNet and EfficientDet.Suboptimal generalization of machine learning models on unseen data is a key challenge which hampers the clinical applicability of such models to medical imaging. Although various methods such as domain adaptation and domain generalization have evolved to combat this challenge, learning robust and generalizable representations is core to medical image understanding, and continues to be a problem. Here, we propose STRAP (Style TRansfer Augmentation for histoPathology), a form of data augmentation based on random style transfer from non-medical style sources such as artistic paintings, for learning domain-agnostic visual representations in computational pathology. Style transfer replaces the low-level texture content of an image with the uninformative style of randomly selected style source image, while preserving the original high-level semantic content. This improves robustness to domain shift and can be used as a simple yet powerful tool for learning domain-agnostic representations. We demonstrate that STRAP leads to state-of-the-art performance, particularly in the presence of domain shifts, on two particular classification tasks in computational pathology.

Autoři článku: Talleyknowles7733 (Mclean Palm)