Stileslangley3395
21, 2.77) was associated with higher odds of being stunted. A child aged 18-23 months had 5.04 times greater odds (95% CI 3.91, 6.5) of being stunted than a child less than 6 months of age. Male child had higher odds of being stunted (AOR 1.33; 95% CI 1.14, 1.54).
Our findings support a multidimensional aetiology for stunting. The results of the study emphasize the importance of women's status and decision-making power in urban India, along with access to and uptake of family planning and services to provide support for survivors of domestic violence. Ultimately, a multilateral effort is needed to ensure the success of nutrition-specific interventions by focusing on the underlying health and social status of women living in urban slums.
ISRCTNRegister ISRCTN56183183 , and Clinical Trials Registry of India CTRI/2012/09/003004.
ISRCTN Register ISRCTN56183183 , and Clinical Trials Registry of India CTRI/2012/09/003004.
In knee osteoarthritis (OA), pain is the most frequent and dominant symptom. https://www.selleckchem.com/products/way-316606.html However, which factors other than radiological changes contribute to the symptoms is unresolved. The aims of this study were to identify factors affecting knee pain from various variables with radiological changes taken into count and exploratively examine what subgroups or phenotype could be identified by cluster analysis using the identified knee pain factors.
Patients 60 years or older who underwent radiographic evaluation were included in this cross-sectional study, and those subjects who completed a questionnaire about knee symptoms without missing data were eligible for analysis. Multiple regression analysis was used to examine the associations between selected variables and The Japanese Knee Osteoarthritis Measure (JKOM) pain score. We grouped the subjects by cluster analysis using identified variables.
Two thousand five hundred forty-two subjects were included in the full set of analyses. Age, body mass index (BMI), radntified six subgroups of knee outcome in the general population. The results showed that obesity with radiological changes or depression was associated with worse knee outcome.
Inflammation and particularly interleukin-1β (IL-1β), a pro-inflammatory cytokine highly secreted by activated immune cells during early AMD pathological events, contribute significantly to retinal neurodegeneration. Here, we identify specific cell types that generate IL-1β and harbor the IL-1 receptor (IL-1R) and pharmacologically validate IL-1β's contribution to neuro-retinal degeneration using the IL-1R allosteric modulator composed of the amino acid sequence rytvela (as well as the orthosteric antagonist, Kineret) in a model of blue light-induced retinal degeneration.
Mice were exposed to blue light for 6 h and sacrificed 3 days later. Mice were intraperitoneally injected with rytvela, Kineret, or vehicle twice daily for 3 days. The inflammatory markers F4/80, NLRP3, caspase-1, and IL-1β were assessed in the retinas. Single-cell RNA sequencing was used to determine the cell-specific expression patterns of retinal Il1b and Il1r1. Macrophage-induced photoreceptor death was assessed ex vivo using retinalin these conditions, reinforcing the rationale for clinical translation.
Mesenchymal stem cells (MSCs), including adipose-derived mesenchymal stem cells (ADSCs), have been shown to attenuate organ damage in acute respiratory distress syndrome (ARDS) and sepsis; however, the underlying mechanisms are not fully understood. In this study, we aimed to explore the potential roles and molecular mechanisms of action of ADSCs in histone-induced endothelial damage.
Male C57BL/6 N mice were intravenously injected with ADSCs, followed by histones or a vehicle. The mice in each group were assessed for survival, pulmonary vascular permeability, and histological changes. A co-culture model with primary human umbilical vein endothelial cells (HUVECs) exposed to histones was used to clarify the paracrine effect of ADSCs. Overexpression and inhibition of miR-126 ADSCs were also examined as causative factors for endothelial protection.
The administration of ADSCs markedly improved survival, inhibited histone-mediated lung hemorrhage and edema, and attenuated vascular hyper-permeability in mice. ADSCs were engrafted in the injured lung and attenuated histone-induced endothelial cell apoptosis. ADSCs showed endothelial protection (via a paracrine effect) and Akt phosphorylation in the histone-exposed HUVECs. Notably, increased Akt phosphorylation by ADSCs was mostly mediated by exosomes in histone-induced cytotoxicity and lung damage. Moreover, the expression of miR-126 was increased in exosomes from histone-exposed ADSCs. Remarkably, the inhibition of miR-126 in ADSCs failed to increase Akt phosphorylation in histone-exposed HUVECs.
ADSC-derived exosomes may exert protective effects on endothelial cells via activation of the PI3K/Akt pathway.
ADSC-derived exosomes may exert protective effects on endothelial cells via activation of the PI3K/Akt pathway.
Despite years of research, porcine-induced pluripotent stem cells (piPSCs) with germline chimeric capacity have not been established. Furthermore, the key transcription factors (TFs) defining the naïve state in piPSCs also remain elusive, even though TFs in the inner cell mass (ICM) are believed to be key molecular determinants of naïve pluripotency. In this study, interferon regulatory factor 1 (IRF-1) was screened to express higher in ICM than trophectoderm (TE). But the impact of IRF-1 on maintenance of pluripotency in piPSCs was not determined.
Transcriptome profiles of the early ICM were analyzed to determine highly interconnected TFs. Cells carrying these TFs' reporter were used to as donor cells for somatic cell nuclear transfer to detect expression patterns in blastocysts. Next, IRF1-Flag was overexpressed in DOX-hLIF-2i piPSCs and AP staining, qRT-PCR, and RNA-seq were conducted to examine the effect of IRF-1 on pluripotency. Then, the expression of IRF-1 in DOX-hLIF-2i piPSCs was labeled by GFP naïve related genes in piPSCs. Analysis by ChIP-Seq indicated that genes related to the JAK-STAT pathway, and expression of IL7 and STAT3 were activated by IRF-1. The inhibitor of STAT3 phosphorylation was observed could revert the expression of primed genes in IRF-1 overexpressing cells, but the addition of IL7 in culture medium had no apparent change in the cell morphology, AP staining results, or expression of pluripotency related genes. In addition, knockdown of IRF-1 during reprogramming appeared to reduce reprogramming efficiency, whereas overexpression exerted the converse effect.
The IRF-1 expressed in the ICM of pigs' early blastocyst enhances the pluripotency of piPSCs, in part through promoting the JAK-STAT pathway.
The IRF-1 expressed in the ICM of pigs' early blastocyst enhances the pluripotency of piPSCs, in part through promoting the JAK-STAT pathway.
Mesenchymal stem cells (MSCs) play an important role in tumor progression; concomitantly, MSCs also undergo profound changes in the tumor microenvironment (TME). These changes can directly impact the application and efficacy of MSC-based anti-tumor therapy. However, few studies have focused on the regulation of MSC fate in TME, which will limit the progress of MSC-based anti-tumor therapy. Herein, we investigated the effects of conditioned medium from human hepatocellular carcinoma cells (HCC-CM) on the phenotype and glucose metabolism of human adipose tissue-derived MSCs (hAT-MSCs).
The passage 2 (P2) to passage 3 (P3) hAT-MSCs were exposed to conditioned medium from Hep3B, Huh7 and HCCLM3 cells for 4-8 weeks in vitro. Then, immunofluorescent, CCK-8 assay, EdU assay, Transwell assay, and flow cytometry were used to assess the alterations in cell phenotype in terms of cell morphology, secretory profiles, proliferation, migration, invasion, cell cycle, and apoptosis. In addition, glucose metabolism was eval strategies for MSC-based anti-tumor therapy.
Cardiovascular diseases (CVDs) remain the leading causes of morbidity and mortality in the world. Hypertension is an important and prevalent cardiovascular risk factor. The present study will be conducted to investigate the effect of barberry as a cardio-protective fruit on the blood pressure in patients with hypertension and other CVD risk factors. Furthermore, plasma concentrations of lipids and inflammatory biomarkers will be evaluated.
This is an 8-week, prospective, single-blinded, parallel assigned, randomized controlled clinical trial (RCT) in which eligible men and women with hypertension and other cardiovascular risk factors will be randomized to either placebo powder (PP; containing 9 g maltodextrin, 1 g citric acid, 1 g milled sucrose and edible red color (n = 37)) or barberry powder (BP; containing 10 g milled dried barberry and 1 g of milled sucrose (n = 37)) groups. At baseline and after 8 weeks of intervention, plasma lipids and inflammatory markers, 24-h urinary nitrite/nitrate and sodium excretion, and 24-h ambulatory blood pressure monitoring (ABPM) will be measured. Anthropometric measures and dietary assessment will be performed as well. Data analysis will be done using SPSS version-21 software.
The interest in natural and functional food products has increased globally. This RCT will add to the growing literature for the potential antihypertensive, lipid-lowering, and anti-inflammatory effects of barberry in humans.
ClinicalTrials.gov (NCT number) NCT04084847 . Registered on 10 December 2019.
ClinicalTrials.gov (NCT number) NCT04084847 . Registered on 10 December 2019.
The COVID-19 pandemic has imposed an enormous burden on health care systems around the world. In the past, the administration of convalescent plasma of patients having recovered from SARS and severe influenza to patients actively having the disease showed promising effects on mortality and appeared safe. Whether or not this also holds true for the novel SARS-CoV-2 virus is currently unknown.
DAWn-Plasma is a multicentre nation-wide, randomized, open-label, phase II proof-of-concept clinical trial, evaluating the clinical efficacy and safety of the addition of convalescent plasma to the standard of care in patients hospitalized with COVID-19 in Belgium. Patients hospitalized with a confirmed diagnosis of COVID-19 are eligible when they are symptomatic (i.e. clinical or radiological signs) and have been diagnosed with COVID-19 in the 72 h before study inclusion through a PCR (nasal/nasopharyngeal swab or bronchoalveolar lavage) or a chest-CT scan showing features compatible with COVID-19 in the absence of aospectively registered.
ClinicalTrials.gov NCT04429854 . Registered on 12 June 2020 - Retrospectively registered.
De novo mutations (DNMs) have been implicated in the etiology of schizophrenia (SZ), a chronic debilitating psychiatric disorder characterized by hallucinations, delusions, cognitive dysfunction, and decreased community functioning. Several DNMs have been identified by examining SZ cases and their unaffected parents; however, in most cases, the biological significance of these mutations remains elusive. To overcome this limitation, we have developed an approach of using induced pluripotent stem cell (iPSC) lines from each member of a SZ case-parent trio, in order to investigate the effects of DNMs in cellular progenies of interest, particularly in dentate gyrus neuronal progenitors.
We identified a male SZ patient characterized by early disease onset and negative symptoms, who is a carrier of 3 non-synonymous DNMs in genes LRRC7, KHSRP, and KIR2DL1. iPSC lines were generated from his and his parents' peripheral blood mononuclear cells using Sendai virus-based reprogramming and differentiated into neuronal progenitor cells (NPCs) and hippocampal dentate gyrus granule cells.