Aagaardbanks1756

Z Iurium Wiki

Verze z 23. 9. 2024, 21:05, kterou vytvořil Aagaardbanks1756 (diskuse | příspěvky) (Založena nová stránka s textem „Kinesin superfamily protein 3C (KIF3C), a motor protein of the kinesin superfamily, is expressed in the central nervous system (CNS). Recently, several stu…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Kinesin superfamily protein 3C (KIF3C), a motor protein of the kinesin superfamily, is expressed in the central nervous system (CNS). Recently, several studies have suggested that KIF3C may act as a potential therapeutic target in solid tumors. However, the exact function and possible mechanism of the motor protein KIF3C in glioma remain unclear. In this study, a variety of tests including CCK-8, migration, invasion, and flow cytometry assays, and western blot were conducted to explore the role of KIF3C in glioma cell lines (U87 and U251). We found that overexpression of KIF3C in glioma cell lines promoted cell proliferation, migration, and invasion and suppressed apoptosis, while silencing of KIF3C reversed these effects. Ectopic KIF3C also increased the expression of N-cadherin, vimentin, snail, and slug to promote the epithelial-mesenchymal transition (EMT). Mechanistically, overexpression of KIF3C increased the levels of phosphatidylinositol 3-kinase (PI3K) and phosphorylated protein kinase B (p-AKT). These responses were reversed by KIF3C downregulation or AKT inhibition. Our results indicate that KIF3C promotes proliferation, migration, and invasion and inhibits apoptosis in glioma cells, possibly by activating the PI3K/AKT pathway in vitro. KIF3C might act as a potential biomarker or therapeutic target for further basic research or clinical management of glioma.Large bone defects pose an unsolved challenge for orthopedic surgeons. Our group has previously reported the construction of a barrier membrane made of ammoniomethacrylate copolymer USP (AMCA), which supports the adhesion, proliferation, and osteoblastic differentiation of human mesenchymal stem cells (hMSCs). In this study, we report the use of AMCA membranes to seclude critical segmental defect (~1.0 cm) created in the middle third of rabbit radius and test the efficiency of bone regeneration. Bone regeneration was assessed by radiography, biweekly for 8 weeks. The results were verified by histology and micro-CT at the end of the follow-up. The AMCA membranes were found superior to no treatment in terms of new bone formation in the defect, bone volume, callus surface area normalized to total volume, and the number of bone trabeculae, after eight weeks. Additional factors were then assessed, and these included the addition of simvastatin to the membrane, coating the membrane with human MSC, and a combination of those. The addition of simvastatin to the membranes demonstrated a stronger effect at a similar radiological follow-up. We conclude that AMCA barrier membranes per se and simvastatin delivered in a controlled manner improve bone regeneration outcome.

(

) is the most important species in dentistry and plays a significant role in the etiology of persistent apical lesions after root canal treatment. Up to date, the intracanal application of 2% chlorhexidine for 7 days is the best way to eliminate

However, due to the ability of this bacterium to persist and survive in harsh environments, many studies have been directed towards finding an alternative strategy for prevention or eradication of it. This study was conducted to investigate the effect of bismuth nanoparticles on

, as an etiologic factor in recurrent root canal infections.

Forty patients, referred to Endodontic Ward of Shiraz University of Medical Science for endodontic pretreatment, provided root canal samples. First, all samples were transferred in Enterococcosel broth and incubated. Then, samples which showed growth were plated on blood agar plates and incubated for further PCR procedure. Nanoparticle powder was dissolved in high-purity water, and the final concentration of bismuth nanoxidine, can be suggested to be used in different fields of dentistry.

The experimental data suggest that bismuth nanoparticles could be an interesting alternative to combat E. faecalis, which, in view of the advantages mentioned for bismuth nanoparticle like inhibiting Streptococcus mutans biofilm formation and higher antibacterial activity compared to chlorhexidine, can be suggested to be used in different fields of dentistry.As potential inhibitors target to biological enzymes, antibiotics may have certain impacts on the biochemical treatment process. With micrococcus catalase (CAT) served as the target molecule, the impact and inhibition mechanism for typical tetracyclines (TCs) were evaluated. Toxicity experiments showed that TCs had significant inhibition on CAT in the sequence of tetracycline>chlortetracycline>oxytetracycline>doxycycline. To clarify the inhibition mechanism between TCs and CAT which was explored with the assistance of fluorescence spectroscopy and MOE molecule simulation. According to fluorescence analysis, TCs quenched the fluorescence signal of CAT by the mode of static quenching. Combined with toxicity data, it could be presumed that TCs combined with the catalytic active center and thus inhibited CAT. Above presumption was further verified by the molecular simulation data. When TCs combined with the catalytic center of CAT, the compounds have increased combination areas and prominent energy change (compared with the compounds formed by TCs and noncatalytic center recommend by MOE software). IBM SPSS statistics showed that TC toxicity positively correlated with the hydrogen bonds such as O13→Glu252, O1←Arg195, and O6→Asp249, but negatively correlated with the hydrogen bonds such as O10→Pro363, O10→Lys455, and O12 → Asn127. TC toxicity also positively correlated with the ion bonds ofN4-Glu252, but negatively correlated with the ion bonds of N4-Asp379. Hydrogen bonds and ion bonds for above key sites were closely related to the inhibition effect of TCs on CAT.Replacing a single tooth in the anterior maxilla is one of the greatest challenges in dentistry. Both functional and aesthetic results are to be strictly pursued. Planning and executing such a case through a totally digital methodology eventually guarantee many advantages, above all patient's operative and postoperative comfort. To ascertain this, a BOP analysis was performed which allowed us to evaluate soft tissues health, and more; crestal bone resorption was measured to evaluate hard tissues stability. This assumption was studied through four cases in which patients were alternatively treated with analogic and digital techniques. Four homogeneous patients were recruited. They all needed to extract one of the upper incisors, due to different clinical reasons, and then to replace it with an implant. Each patient was treated with an immediate postextractive implant which was immediately loaded, and finally, analogical and digital techniques were compared. All patients underwent a preoperative CBCT examination. After surgery, patients were checked by the surgeon after 10 days and one month to evaluate the progress of healing and to exclude any prosthetic problem. At 6 months (T1), one year (T2), and three years (T3), intraoral x-rays were performed using customized centring devices, according to the parallel beam technique. All data have been collected in a table and statistically processed; mean and standard deviation were measured. All patients entered an oral hygiene program with six months recall. Dental hygienist checked the BOP at T1, T2, and T3. At every step, similar levels of BOP were recorded. About interproximal bone loss, all patients showed an initial moderate loss (between T1 and T2), followed by stable values between T2 and T3. Despite the important limitations of a study with few cases, these results show a similar outcome comparing digital and analogical methods.Obtaining the computational models for the functioning of the brain gives us a chance to understand the brain functionality thoroughly. This would help the development of better treatments for neurological illnesses and disorders. We created a cortical model using Python language using the Brian simulator. The Brian simulator is specialized in simulating the neuronal connections and synaptic interconnections. The dynamic connection model has multiple parameters in order to ensure an accurate simulation (Bowman, 2016). We concentrated on the connection weights and studied their effect on the interactivity and connectivity of the cortical neurons in the same cortical layer and across multiple layers. read more As synchronization helps us to measure the degree of correlation between two or more neuronal groups, the synchronization between the neuronal groups, which are connected across layers, is considered. Despite its obvious importance, there are no sufficient studies concerned about the synchronization in the simulated cortical models. Such studies can help in examining the hypothesis and the dynamical behavior of the simulated model. In this paper, we simulated a cortical model and dynamical behavior and then studied the effect of input noise on its internal neuronal networks and their synchronization.

Platinum-based chemotherapy plays an antitumor role by damaging DNA. X-ray repair crosscomplementing protein 1 (XRCC1) participates in DNA repair and thus affects the sensitivity to platinum drugs. Two polymorphisms of

, rs25487 (Arg399Gln) and rs1799782 (Arg194Trp), have been widely studied for the association with clinical outcomes of platinum-based chemotherapy in Asian patients with non-small-cell lung cancer (NSCLC), but the results remain inconclusive. Thus, we performed the present meta-analysis.

Literature search was performed in PubMed, Web of Science, and EMBASE up to June 2019. Odds ratios (ORs) for objective response ratio (ORR), Cox proportional hazard ratios (HRs) of overall survival (OS) and progression-free survival (PFS), and the corresponding 95% confidence intervals (95% CIs) were calculated to assess the association strengths between

polymorphisms and clinical outcomes. Comparisons were performed in homozygous, heterozygous, dominant, and recessive models.

Finally, a total of 23ased chemotherapy in Asian patients with NSCLC.

Acellular dermal matrix (ADM) products are adopted in the management of injuries to soft tissues. ADMs have been increasingly employed for their clinical advantages, and they are acquiring relevance in the future of plastic surgery. The aim of our study is to evaluate the application of ADMs in our patients who could not undergo fast reconstruction.

We performed a retrospective study on 12 patients who underwent ADM placement for scalp and limb surgical reconstructions at the Humanitas Research Hospital, Rozzano (Milano), Italy. Wounds resulted from 9 tumor resections and 3 chronic ulcers. The ADM substrate used to treat these lesions was PELNAC™ (Gunze, Japan), a double-layered matrix composed of atelocollagen porcine tendon and silicon reinforcement. All patients underwent a second surgical operation to complete the treatment with a full-thickness skin graft to cover the lesion.

In this study, 12 patients were treated with PELNAC™ 11 out of 12 patients showed a good attachment over a median time of 21.3 days (range 14-27). After almost 23 days, all patients were ready to undergo a full-thickness skin grafting.

This study assesses the benefits of PELNAC™ and proposes this method as an alternative to traditional approaches, especially in situations where the latter techniques cannot be applied.

This study assesses the benefits of PELNAC™ and proposes this method as an alternative to traditional approaches, especially in situations where the latter techniques cannot be applied.

Autoři článku: Aagaardbanks1756 (Skovbjerg Kastrup)