Richardsodonnell1117
Anti-fouling coatings are of great interest because of their unique wettability and self-cleaning property, but their widespread applications are seriously hindered by low stability, heavy usage of fluorinated compounds and low transparency, etc. Here, we report a new kind of smooth anti-fouling coatings based on methyltrimethoxysilane. The coatings were fabricated by preparing a stock solution via hydrolytic condensation of methyltrimethoxysilane in isopropanol, followed by wiping the glass slide with the non-woven fabric that sucked the stock solution. The transparent anti-fouling coatings have excellent anti-fouling properties against various fluids such as water, n-hexadecane, diiodomethane, daily encountered liquids (e.g., milk, coffee, red wine, soy sauce and cooking oil), mark seals, artificial fingerprint liquids and paints (both water-based and oil-based), etc. The fluids can easily roll off from the 4-30° titled coatings. Furthermore, the coatings have good mechanical (200 cycles of friction, scratching and bending), chemical (saline, acidic and basic solutions) and thermal stability (boiling and 300 °C heating) regarding the easy sliding behavior of the probing liquids. Lonidamine In addition, the anti-fouling coatings are applicable onto various substrates via the same procedure. The smooth anti-fouling coatings have huge potential applications, owing to the excellent anti-fouling properties, high stability as well as the non-fluorinated and simple preparation method.Inspired by Nepenthes pitcher plants, slippery liquid-infused porous surfaces (SLIPSs) have attracted wide attention and exhibited remarkable liquid repellency, droplet motion control and antifouling properties. However, lubricant-impregnated surfaces have poor durability, leading to loss of control of the movements of droplets during applications. Herein, WO3-based slippery coatings with high stability were prepared by the spray method and photocatalytic reaction. Notably, on the basis of the hierarchical structures, the strong intermolecular forces between the polydimethylsiloxane brush and silicone oil led to the formation of a stable lubricant layer on the WO3-based slippery coating, which can suppress lubricant loss during water collection. After a series of stability tests, such as high-speed centrifugation, long-term storage, acidic solution and multiple heating/cooling cycles, the biomimetic slippery surface still displays excellent surface-slippery stability. Furthermore, the slippery surface exhibits superior water mist capture, water droplet expansion and harvested water removal abilities, leading to good water collection performance. The silicone oil content in the collected water was 28 mg/L, demonstrating that the loss of oil was lower during the water collection process. Even under harsh environments, including multiple heating/cooling cycles, long-term storage and high shear force, lubricant-impregnated coatings can also maintain good water collection efficiency. Therefore, these slippery coatings are promising for widespread application.Cellulosic nanofillers are sustainable replacements of synthetic fillers while the agglomeration limits their potentials in high-performance rubber bionanocomposites. Herein, we investigate the effects of ionic liquid (IL) on cellulose nanocrystal and cellulose nanofibril filled natural rubber (NR) compounds and vulcanizates. The results indicate that IL improves the dispersion of cellulosic nanofillers, crosslinking density of NR matrix and mechanical strength of the vulcanizates. Invesigations of viscoelastic rheological behaviors show amplitude of Payne effect faints in compounds and raises relatively in vulcanizates with the increment of cellulosic nanofillers and IL.Fabricating of economical transitional metal oxide-based materials with satisfied low-temperature catalytic performance and application perspective is still a challenge in deep degradation of VOCs. link2 Here, Mn-Cu bimetallic oxides were facilely prepared by one-step hydrothermal-redox method, which displayed much higher catalytic activity in toluene oxidation than those synthesized by hydrolysis-driven redox-precipitation or co-precipitation approach. It is shown that the lattice defect and oxygen vacancy concentration over prepared materials can be tuned by controlling Cu/Mn molar ratio. Amongst, spinel structured MnCu0.5 exhibited the highest catalytic activity, superior durability and water resistance in toluene total oxidation owing to abundant surface adsorbed oxygen species, excellent low-temperature reducibility, and high amounts of Cu+ and Mn3+. In detail, the reaction rate of MnCu0.5 was over 9.0 times higher than that of MnCu0.75, MnCu0.75-P and MnCu0.75-H2O2 at relative low temperature of 210 °C. The cyclic redox process with easier oxygen species mobility played a key role in the catalytic oxidation of toluene. Typical reaction intermediates as benzyl alcohol, benzaldehyde, benzene, phenol, and benzoquinone could be detected by PTR-MS, which further decomposed to acetone, ethanol, ketone, acetic acid, methanol, formaldehyde and acetaldehyde species by ring opening before total mineralization.Nickel cobalt layered double hydroxide (NiCo-LDH)-based materials have recently emerged as catalysts for important electrochemical applications. However, they frequently suffer from low electrical conductivity and agglomeration, which in turn impairs their performance. Herein, we present a catalyst design based on integrated, self-supported nickel nanotube networks (Ni-NTNWs) loaded with NiCo-LDH nanosheets, which represents a binder-free, hierarchically nanostructured electrode architecture combining continuous conduction paths and openly accessible macropores of low tortuosity with an ultrahigh density of active sites. Similar to macroscale metallic foams, the NTNWs serve as three-dimensionally interconnected, robust frameworks for the deposition of active material, but are structured in the submicron range. Our synthesis is solely based on scalable approaches, namely templating with commercial track-etched membranes, electroless plating, and electrodeposition. Morphological and compositional characterization proved the successful decoration of the inner and outer nanotube surfaces with a conformal NiCo-LDH layer. Ni-NTNW electrodes and hydroxide-decorated variants showed excellent performance in glucose sensing. The highest activity was achieved for the catalyst augmented with NiCo-LDH nanosheets, which surpassed the modification with pure Ni(OH)2. Despite its low thickness of 20 µm, the optimized catalyst layer provided an outstanding sensitivity of 4.6 mA mM-1 cm-2, a low detection limit of 0.2 µM, a fast response time of 5.3 s, high selectivity and stability, and two linear ranges covering four orders of magnitude, up to 2.5 mM analyte. As such, derivatized interconnected metal nano-networks represent a promising design paradigm for highly miniaturized yet effective catalyst electrodes and electrochemical sensors.A binary system composed of carbon dots (CDs) and N-doped CDs (N-CDs) embedded in an organic matrix was used for the analysis of cholesterol by MALDI (matrix-assisted laser desorption and ionization time-of-flight) mass spectrometry, as a model for detection of small, biologically relevant molecules. The results showed that both CDs are sensitive to the cholesterol and can be used either alone or in a binary system with 2,5-dihydroxybenzoic acid (DHB) to enhance the detection process. It was found that both COOH and NH2 groups on CDs surface contributed to the enhancement in the cholesterol detection by MALDI mass spectrometry in the presence of inorganic cations. Nevertheless, in the presence of NaCl, N-CDs led to a better reproducibility of results. link3 It was due to the coexistence of positive and negative charge on N-CDs surface that led to a homogeneous analyte/substrate distribution, which is an important detection parameter. The enhancing effect of carbon dots was linked to a negative Gibbs energy of the complex formation between CDs, Na+, cholesterol and DHB, and it was supported by theoretical calculations. Moreover, upon the addition of CDs/N-CDs, such features as a low ionization potential, vertical excitation, dipole moment and oscillator strength positively affected the cholesterol detection by MALDI in the presence of Na+.Pollution caused due to discharge of toxic and hazardous chemical contaminants from industrial processes is an issue of major environmental concern. Hexavalent chromium [Cr(VI)] is one such known toxic heavy metal contaminant emanated largely from various industrial processes. Since physical-chemical treatment techniques are beset with several problems, there is an increased attention on the use of waste biomaterials/biomass as sorbents for the elimination of heavy metals from aqueous matrices. The main purpose of this study was to evaluate the effectiveness of some low-cost waste biomaterials such as fruit wastes, agricultural and industrial waste/byproducts, waste parts of photosynthetic plants, aquatic plants and fungal biomass collected from different sources for the biosorption of Cr(VI) from aqueous matrices. Amid the tested biomaterials, wood apple shell (WAS) biomass (Limonia acidissima) was found to be highly efficient biosorbent for Cr(VI) sorption. In majority of biomass, it was observed that biosorption of Cr(VI) took place at acidic pH with optimum pH ranging from 2.0 to 5.0. Loading capacity of WAS biomass (29.37 mg/g) was higher than that of conventional adsorbent activated charcoal (26.56 mg/g), which was used as control. Cr(VI) treated biomass (WAS) was characterized using instrumental techniques such as Scanned Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) confirmed the adsorption of Cr(VI). Boehm titration and FTIR studies were conducted to ascertain the presence of functional groups responsible for Cr(VI) sorption by WAS biomass. The WAS biomass removed Cr(VI) from industrial wastewater with an efficiency of >99.9% thus complying with the statutory limits. Considering the economical aspect, the selected biomass can be viewed as a potential candidate for the elimination of toxic contaminant from wastewater.The group of Insect-specific viruses (ISVs) includes viruses apparently restricted to insects based on their inability to replicate in the vertebrates. Increasing numbers of ISVs have been discovered and characterized representing a diverse number of viral families. However, most studies have focused on those ISVs belonging to the family Flaviviridae, which highlights the importance of ISV study from other viral families, which allow a better understanding for the mechanisms of transmission and evolution used for this diverse group of viruses. Some ISVs have shown the potential to modulate arboviruses replication and vector competence of mosquitoes. Based on this, ISVs may be used as an alternative tool for biological control, development of vaccines, and diagnostic platforms for arboviruses. In this review, we provide an update of the general characteristics of ISVs and their interaction with arboviruses that infect vertebrates.How BRCA1 germline mutations predispose to cancer remains poorly understood. Induced pluripotent stem cells (iPSCs) represent an emerging model to investigate the molecular mechanisms underlying malignant transformation in primary cells from individuals who are carriers of deleterious mutations in the BRCA1 gene. Here we report the generation and characterization of iPSC lines from a female donor harboring a germline c.3612delA mutation in the BRCA1 gene and her daughter who does not carry the mutation. Skin fibroblasts were reprogrammed using non-integrative Sendai virus and characterized for their pluripotent properties. These iPSCs are a valuable cellular model for personalized pre-clinical research in the context of BRCA1 mutant hereditary cancers.