Simonsengram9396
Economic and ecological considerations are made for some example cascades to assess their environmental friendliness and applicability.Trigeminal neuralgia (TN) is a complex orofacial pain syndrome characterized by the paroxysmal onset of pain attacks in the trigeminal distribution. The underlying mechanism for this debilitating condition is still not clearly understood. Decades of basic and clinical evidence support the demyelination hypothesis, where demyelination along the trigeminal afferent pathway is a major driver for TN pathogenesis and pathophysiology. Such pathological demyelination can be triggered by physical compression of the trigeminal ganglion or another primary demyelinating disease, such as multiple sclerosis. Further examination of TN patients and animal models has revealed significant molecular changes, channelopathies, and electrophysiological abnormalities in the affected trigeminal nerve. Interestingly, recent electrophysiological recordings and advanced functional neuroimaging data have shed new light on the global structural changes and the altered connectivity in the central pain-related circuits in TN patients. The current article aims to review the latest findings on the pathophysiology of TN and cross-examining them with the current surgical and pharmacologic management for TN patients. Understanding the underlying biology of TN could help scientists and clinicians to identify novel targets and improve treatments for this complex, debilitating disease.While overproduction of recombinant secretory proteins (rs-Prots) triggers multiple changes in the physiology of the producer cell, exposure to suboptimal growth conditions may further increase that biological response. The environmental conditions may modulate the efficiency of both the rs-Prot gene transcription and translation but also the polypeptide folding. Insights into responses elicited by different environmental stresses on the rs-Prots synthesis and host yeast physiology might contribute to a better understanding of fundamental biology processes, thus providing some clues to further optimise bioprocesses. Herein, a series of batch cultivations of Yarrowia lipolytica strains differentially metabolically burdened by the rs-Prots overproduction have been conducted. Combinations of different stress factors, namely pH (3/7) and oxygen availability (kLa 28/110 h-1), have been considered for their impact on cell growth and morphology, substrate consumption, metabolic activity, genes expression, and secretion of the rs-Prots. Amongst others, our data demonstrate that a highly metabolically burdened cell has a higher demand for the carbon source, although presenting a compromised cell growth. Moreover, the observed decrease in rs-Prot production under adverse environmental conditions rather results from the emergence of a less-producing cell subpopulation than from the decrease of the synthetic capacity of the whole cell population.Extracytoplasmic function (ECF) sigma factors are subunits of the RNA polymerase specialized in activating the transcription of a subset of genes responding to a specific environmental condition. The signal-transduction pathways where they participate can be activated by diverse mechanisms. The most common mechanism involves the action of a membrane-bound anti-sigma factor, which sequesters the ECF sigma factor, and releases it after the stimulus is sensed. However, despite most of these systems following this canonical regulation, there are many ECF sigma factors exhibiting a non-canonical regulatory mechanism. In this review, we aim to provide an updated and comprehensive view of the different activation mechanisms known for non-canonical ECF sigma factors, detailing their inclusion to the different phylogenetic groups and describing the mechanisms of regulation of some of their representative members such as EcfG from Rhodobacter sphaeroides, showing a partner-switch mechanism; EcfP from Vibrio parahaemolyticus, with a phosphorylation-dependent mechanism; or CorE from Myxococcus xanthus, regulated by a metal-sensing C-terminal extension.The liver is one of the richest organs in mitochondria, serving as a hub for key metabolic pathways such as β-oxidation, the tricarboxylic acid (TCA) cycle, ketogenesis, respiratory activity, and adenosine triphosphate (ATP) synthesis, all of which provide metabolic energy for the entire body. Mitochondrial dysfunction has been linked to subcellular organelle dysfunction in liver diseases, particularly fatty liver disease. Acute fatty liver of pregnancy (AFLP) is a life-threatening liver disorder unique to pregnancy, which can result in serious maternal and fetal complications, including death. Pregnant mothers with this disease require early detection, prompt delivery, and supportive maternal care. AFLP was considered a mysterious illness and though its pathogenesis has not been fully elucidated, molecular research over the past two decades has linked AFLP to mitochondrial dysfunction and defects in fetal fatty-acid oxidation (FAO). Selleckchem Etomoxir Due to deficient placental and fetal FAO, harmful 3-hydroxy fatty acid metabolites accumulate in the maternal circulation, causing oxidative stress and microvesicular fatty infiltration of the liver, resulting in AFLP. In this review, we provide an overview of AFLP and mitochondrial FAO followed by discussion of how altered mitochondrial function plays an important role in the pathogenesis of AFLP.The pineal hormone, melatonin, plays important roles in circadian rhythms and energy metabolism. The hepatic peptide hormone, hepcidin, regulates iron homeostasis by triggering the degradation of ferroportin (FPN), the protein that transfers cellular iron to the blood. However, the role of melatonin in the transcriptional regulation of hepcidin is largely unknown. Here, we showed that melatonin upregulates hepcidin gene expression by enhancing the melatonin receptor 1 (MT1)-mediated c-Jun N-terminal kinase (JNK) activation in hepatocytes. Interestingly, hepcidin gene expression was increased during the dark cycle in the liver of mice, whereas serum iron levels decreased following hepcidin expression. In addition, melatonin significantly induced hepcidin gene expression and secretion, as well as the subsequent FPN degradation in hepatocytes, which resulted in cellular iron accumulation. Melatonin-induced hepcidin expression was significantly decreased by the melatonin receptor antagonist, luzindole, and by the knockdown of MT1. Moreover, melatonin activated JNK signaling and upregulated hepcidin expression, both of which were significantly decreased by SP600125, a specific JNK inhibitor. Chromatin immunoprecipitation analysis showed that luzindole significantly blocked melatonin-induced c-Jun binding to the hepcidin promoter. Finally, melatonin induced hepcidin expression and secretion by activating the JNK-c-Jun pathway in mice, which were reversed by the luzindole treatment. These findings reveal a previously unrecognized role of melatonin in the circadian regulation of hepcidin expression and iron homeostasis.Natterin is a potent pro-inflammatory fish molecule, inducing local and systemic IL-1β/IL-1R1-dependent neutrophilia mediated by non-canonical NLRP6 and NLRC4 inflammasome activation in mice, independent of NLRP3. In this work, we investigated whether Natterin activates mitochondrial damage, resulting in self-DNA leaks into the cytosol, and whether the DNA sensor cGAS and STING pathway participate in triggering the innate immune response. Employing a peritonitis mouse model, we found that the deficiency of the tlr2/tlr4, myd88 and trif results in decreased neutrophil influx to peritoneal cavities of mice, indicative that in addition to MyD88, TRIF contributes to neutrophilia triggered by TLR4 engagement by Natterin. Next, we demonstrated that gpcr91 deficiency in mice abolished the neutrophil recruitment after Natterin injection, but mice pre-treated with 2-deoxy-d-glucose that blocks glycolysis presented similar infiltration than WT Natterin-injected mice. In addition, we observed that, compared with the WT Natterin-injected mice, DPI and cyclosporin A treated mice had a lower number of neutrophils in the peritoneal exudate. The levels of dsDNA in the supernatant of the peritoneal exudate and processed IL-33 in the supernatant of the peritoneal exudate or cytoplasmic supernatant of the peritoneal cell lysate of WT Natterin-injected mice were several folds higher than those of the control mice. The recruitment of neutrophils to peritoneal cavity 2 h post-Natterin injection was intensely impaired in ifnar KO mice and partially in il-28r KO mice, but not in ifnγr KO mice. Finally, using cgas KO, sting KO, or irf3 KO mice we found that recruitment of neutrophils to peritoneal cavities was virtually abolished in response to Natterin. These findings reveal cytosolic DNA sensors as critical regulators for Natterin-induced neutrophilia.Melanoma-initiating cells (MICs) contribute to the tumorigenicity and heterogeneity of melanoma. MICs are identified by surface and functional markers and have been shown to display cancer stem cell (CSC) properties. However, the existence of MICs that follow the hierarchical CSC model has been questioned by studies showing that single unselected melanoma cells are highly tumorigenic in xenotransplantation assays. Herein, we characterize cells expressing MIC markers (CD20, CD24, CD133, Sca-1, ABCB1, ABCB5, ALDHhigh) in the B16-F10 murine melanoma cell line. We use flow cytometric phenotyping, single-cell sorting followed by in vitro clonogenic assays, and syngeneic in vivo serial transplantation assays to demonstrate that the expression of MIC markers does not select CSC-like cells in this cell line. Previously, our group showed that heme-degrading enzyme heme oxygenase-1 (HO-1) can be upregulated in melanoma and increase its aggressiveness. Here, we show that HO-1 activity is important for non-adherent growth of melanoma and HO-1 overexpression enhances the vasculogenic mimicry potential, which can be considered protumorigenic activity. However, HO-1 overexpression decreases clone formation in vitro and serial tumor initiation in vivo. Thus, HO-1 plays a dual role in melanoma, improving the progression of growing tumors but reducing the risk of melanoma initiation.Vascular remodeling is a typical feature of vascular diseases, such as atherosclerosis, aneurysms or restenosis. Excessive inflammation is a key mechanism underlying vascular remodeling via the modulation of vascular fibrosis, phenotype and function. Recent evidence suggests that not only augmented inflammation but unresolved inflammation might also contribute to different aspects of vascular diseases. Resolution of inflammation is mediated by a family of specialized pro-resolving mediators (SPMs) that limit immune cell infiltration and initiate tissue repair mechanisms. SPMs (lipoxins, resolvins, protectins, maresins) are generated from essential polyunsaturated fatty acids. Synthases and receptors for SPMs were initially described in immune cells, but they are also present in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), where they regulate processes important for vascular physiology, such as EC activation and VSMC phenotype. Evidence from genetic models targeting SPM pathways and pharmacological supplementation with SPMs have demonstrated that these mediators may play a protective role against the development of vascular remodeling in atherosclerosis, aneurysms and restenosis.