Krogsgaardshaffer8943

Z Iurium Wiki

Verze z 23. 9. 2024, 17:23, kterou vytvořil Krogsgaardshaffer8943 (diskuse | příspěvky) (Založena nová stránka s textem „The genus Rhodotorula includes basidiomycetous oleaginous yeast species. Rhodotorula babjevae can produce compounds of biotechnological interest such as li…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The genus Rhodotorula includes basidiomycetous oleaginous yeast species. Rhodotorula babjevae can produce compounds of biotechnological interest such as lipids, carotenoids, and biosurfactants from low value substrates such as lignocellulose hydrolysate. High-quality genome assemblies are needed to develop genetic tools and to understand fungal evolution and genetics. Here, we combined short- and long-read sequencing to resolve the genomes of two R. babjevae strains, CBS 7808 (type strain) and DBVPG 8058, at chromosomal level. Both genomes are 21 Mbp in size and have a GC content of 68.2%. Allele frequency analysis indicates that both strains are tetraploid. The genomes consist of a maximum of 21 chromosomes with a size of 0.4 to 2.4 Mbp. In both assemblies, the mitochondrial genome was recovered in a single contig, that shared 97% pairwise identity. Pairwise identity between most chromosomes ranges from 82 to 87%. We also found indications for strain-specific extrachromosomal endogenous DNA. A total of 7591 and 7481 protein-coding genes were annotated in CBS 7808 and DBVPG 8058, respectively. CBS 7808 accumulated a higher number of tandem duplications than DBVPG 8058. We identified large translocation events between putative chromosomes. Genome divergence values between the two strains indicate that they may belong to different species.Cytochrome P450s are a group of monooxygenase enzymes involved in primary, secondary and xenobiotic metabolisms. They have a wide application in the agriculture sector where they could serve as a target for herbicides or fungicides, while they could function in the pharmaceutical industry as drugs or drugs structures or for bioconversions. Alternaria species are among the most commonly encountered fungal genera, with most of them living as saprophytes in different habitats, while others are parasites of plants and animals. This study was conducted to elucidate the diversity and abundance, evolutionary relationships and cellular localization of 372 cytochrome P450 in 13 Alternaria species. The 372 CYP proteins were phylogenetically clustered into ten clades. Forty (40) clans and seventy-one (71) cyp families were identified, of which eleven (11) families were found to appear in one species each. The majority of the CYP proteins were located in the endomembrane system. Polyketide synthase (PKS) gene cluster was the predominant secondary metabolic-related gene cluster in all the Alternaria species studied, except in A. porriof, where non-ribosomal peptide synthetase genes were dominant. This study reveals the expansion of cyps in these fungal genera, evident in the family and clan expansions, which is usually associated with the evolution of fungal characteristics, especially their lifestyle either as parasites or saprophytes, with the ability to metabolize a wide spectrum of substrates. This study can be used to understand the biology, physiology and toxigenic potentials of P450 in these fungal genera.Lignin is an abundant renewable source of aromatics and precursors for the production of other organic chemicals. However, lignin is a heterogeneous polymer, so the mixture of aromatics released during its depolymerization can make its conversion to chemicals challenging. Microbes are a potential solution to this challenge, as some can catabolize multiple aromatic substrates into one product. Novosphingobium aromaticivorans has this ability, and its use as a bacterial chassis for lignin valorization could be improved by the ability to predict product yields based on thermodynamic and metabolic inputs. In this work, we built a genome-scale metabolic model of N. aromaticivorans, iNovo479, to guide the engineering of strains for aromatic conversion into products. iNovo479 predicted product yields from single or multiple aromatics, and the impact of combinations of aromatic and non-aromatic substrates on product yields. We show that enzyme reactions from other organisms can be added to iNovo479 to predict the feasibility and profitability of producing additional products by engineered strains. Thus, we conclude that iNovo479 can help guide the design of bacteria to convert lignin aromatics into valuable chemicals.Metabolic syndrome (MS) is a cluster of metabolic signs that increases the risk of developing type 2 two diabetes mellitus and cardiovascular diseases. MS leads to pancreatic beta cell exhaustion and decreased insulin secretion through unknown mechanisms in a time-dependent manner. ATP-sensitive potassium channels (KATP channels), common targets of anti-diabetic drugs, participate in the glucose-stimulated insulin secretion, coupling the metabolic status and electrical activity of pancreatic beta cells. We investigated the early effects of MS on the conductance, ATP and glybenclamide sensitivity of the KATP channels. We used Wistar rats fed with a high-sucrose diet (HSD) for 8 weeks as a MS model. In excised membrane patches, control and HSD channels showed similar unitary conductance and ATP sensitivity pancreatic beta cells in their KATP channels. In contrast, MS produced variability in the sensitivity to glybenclamide of KATP channels. We observed two subpopulations of pancreatic beta cells, one with similar (Gly1) and one with increased (Gly2) glybenclamide sensitivity compared to the control group. This study shows that the early effects of MS produced by consuming high-sugar beverages can affect the pharmacological properties of KATP channels to one of the drugs used for diabetes treatment.Viticultural practices and irrigation have a major impact on fruit development and yield, and ultimately on must quality. The effects of water deficit (WD), defoliation (Def), and crop-thinning (CT) on Solaris plants and fruit development, as well as on the chemical composition of grape juice were investigated. WD was induced at three periods during fruit development (pre-veraison, veraison, and ripening) in pot-grown plants, while Def and CT were carried out on field-grown plants. Environmental and vegetative parameters were monitored during the experiments. The bulk chemical composition of the fruits was determined in juice by Fourier Transform-Infrared (FT-IR) spectroscopy throughout fruit ripening and at final harvest. The results showed that WD reduced soil water content and leaf water status. CT significantly reduced yield per vine, but increased cluster size. Mid to late WD reduced soluble solids by 1%. CT increased sugar content in juice, while Def decreased sugar accumulation. Total acids were higher in the juice from the field vines. Yet, CT lowered malic and tartaric acids. Def increased tartaric acid. Ammonia and alpha amino nitrogen were higher in the juice from pot-grown vines, while pH was lowered by Def and raised by CT. It is concluded that Solaris has a remarkable ability to tolerate and recover from WD. CT and Def significantly affected the bulk chemical composition of grapes in terms of total acidity and sugar accumulation, with CT grapes having the highest sugar content and the lowest total acidity and Def the opposite.Exposure to some environmental pollutants can have potent endocrine-disrupting effects, thereby promoting hormone imbalance and cardiometabolic diseases such as non-alcoholic fatty liver disease (NAFLD), diabetes, and cardiorenal diseases. Recent evidence also suggests that many environmental pollutants can reorganize the gut microbiome to potentially impact these diverse human diseases. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is among the most potent endocrine-disrupting dioxin pollutants, yet our understanding of how TCDD impacts the gut microbiome and systemic metabolism is incompletely understood. Here, we show that TCDD exposure in mice profoundly stimulates the hepatic expression of flavin-containing monooxygenase 3 (Fmo3), which is a hepatic xenobiotic metabolizing enzyme that is also responsible for the production of the gut microbiome-associated metabolite trimethylamine N-oxide (TMAO). Interestingly, an enzymatic product of FMO3 (TMAO) has been associated with the same cardiometabolic diseases that these environmental pollutants promote. Therefore, here, we examined TCDD-induced alterations in the gut microbiome, host liver transcriptome, and glucose tolerance in Fmo3+/+ and Fmo3-/- mice. Our results show that Fmo3 is a critical component of the transcriptional response to TCDD, impacting the gut microbiome, host liver transcriptome, and systemic glucose tolerance. Zoligratinib Collectively, this work uncovers a previously underappreciated role for Fmo3 in integrating diet-pollutant-microbe-host interactions.Cucumber xylem and phloem sap is a key link in nutrient distribution, transportation and signal transduction of cucumber plants; however, the metabolic response mechanism of cucumber xylem and phloem sap under phosphorus stress has not been clearly revealed. In this study, gas chromatography-mass spectrometry (GC-MS) combined with principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to analyze the metabolites in cucumber xylem and phloem sap under different phosphorus stress. A total of 22 differential metabolites were screened from xylem and phloem sap, respectively. Through the analysis of metabolic pathways of differential metabolites, four and three key metabolic pathways were screened, respectively. The results showed that compared with the normal phosphorus level, the content of most amino acids in the key metabolic pathway increased in xylem but decreased in phloem both under low and high phosphorus stress levels. The contents of sucrose and glucose in phloem glycolysis pathway showed a positive correlation with the change of phosphorus nutrient levels. The tricarboxylic acid cycle was promoted in xylem and phloem of cucumber under low and high phosphorus nutrient levels, and the contents of malic acid and citric acid increased significantly. This study provided abundant biochemical information for the metabolic response and regulation strategies of cucumber xylem and phloem under phosphorus stress, and is committed to looking for more sensitive markers to evaluate the supply level of phosphorus nutrients in cucumber.Exposure to hexavalent chromium Cr(VI) may occur in several occupational activities, placing workers in many industries at risk for potential related health outcomes. Untargeted metabolomics was applied to investigate changes in metabolic pathways in response to Cr(VI) exposure. We obtained our data from a study population of 220 male workers with exposure to Cr(VI) and 102 male controls from Belgium, Finland, Poland, Portugal and the Netherlands within the HBM4EU Chromates Study. Urinary metabolite profiles were determined using liquid chromatography mass spectrometry, and differences between post-shift exposed workers and controls were analyzed using principal component analysis. Based on the first two principal components, we observed clustering by industrial chromate application, such as welding, chrome plating, and surface treatment, distinct from controls and not explained by smoking status or alcohol use. The changes in the abundancy of excreted metabolites observed in workers reflect fatty acid and monoamine neurotransmitter metabolism, oxidative modifications of amino acid residues, the excessive formation of abnormal amino acid metabolites and changes in steroid and thyrotropin-releasing hormones. The observed responses could also have resulted from work-related factors other than Cr(VI). Further targeted metabolomics studies are needed to better understand the observed modifications and further explore the suitability of urinary metabolites as early indicators of adverse effects associated with exposure to Cr(VI).

Autoři článku: Krogsgaardshaffer8943 (Arildsen Bengtsen)