Greerbowen3442
The silver nanoneedle mitigates the current decay observed on gold electrodes and produces stable DC channel currents. Our findings propose the formation of a AgCl layer creating a nonpolarizable electrode. The new nanoneedle is successfully applied for single-molecule detection of sulfonated β-cyclodextrin (S7βCD) using αHL as a test bed protein. We believe that this new silver nanoneedle platform has great potential given the relative ease of lipid bilayer formation and stable open channel currents.Electrochemiluminescence (ECL) by virtue of its controllability and versatility has emerged as a significant tool in bioassay, but how to integrate it with other (nano)materials and further break the limit of sensitivity for ultrasensitive detection still possess tremendous potential. Herein, a close-packed Ru@SiO2 NP nanomembrane that serves as an enhanced substrate and luminophore enricher simultaneously was constructed by the liquid-liquid interface self-assembly method and applied for ECL-enhanced bioassay. The developed ECL electrode obtained ∼600-fold enhancement on ECL intensity compared with the bare ITO electrode and ∼21-fold enhancement compared with the SiO2 NP nanomembrane electrode due to the dramatic light scattering of the 2D SiO2 NPs and the enrichment of Ru(bpy)32+ molecules on the surface of the Ru@SiO2 NP nanomembrane electrode. Based on the fascinating Ru@SiO2 NP nanomembrane platform, we further constructed a label-free immunosensor for the detection of prostate-specific antigen (PSA). The as-fabricated Ru@SiO2-nanomembrane ECL immunosensor exhibited good stability and performed ultrasensitive detection with an utmost low detection limit of 0.169 fg·mL-1 (signal/noise = 3). Our work puts forward an effective solution benefiting for further improving ECL performance for ultrasensitive bioassays.The cryopreservation (CP) of cell/tissue is indispensable in medical science. However, the formation of ice during cooling and ice recrystallization/growth in time of thawing present significant risk of cell/tissue damage upon analysis of CP process. Herein, the natural and biocompatible silk fibroin (SF) with regular hydrophobic and hydrophilic domains, were first employed as a cryoprotectant (CPA), to the CP of human bone-derived mesenchymal stem cells (hBMSCs), which has been routinely cyropreserved for cell-based therapies. Addtion of SF can regulate the formation of ice crystals during cooling process because of its strong hydration ability in the comparation to the cryopreservation medium (CM) without SF. Moreover, the devitrification-induced recrystallization/growth of ice during the thawing process is suppressed. Most importantly, the addition of 10 mg mL-1 SF can achieve 81.28% cell viability of cryopreserved hBMSCs as similar as those with the addition of 180 mg mL-1 Ficoll 70 (commercial CPA), and the functions of the cryopreserved hBMSCs are maintained as good as that of the fresh ones. This work is not only significant for meeting the ever-increasing demand of cell therapy, but also trailblazing for designing materials in controlling ice formation and growth during the CP of other cells and tissues.Glucocorticoids (GCs) are widely used to treat a variety of autoimmune and inflammatory diseases; however, systemic delivery of GCs is associated with side effects that affect essentially every organ system, reflecting the nearly ubiquitous expression of the glucocorticoid receptor (GR). Targeted delivery of GCs to diseased tissues using antibody-glucocorticoid conjugates (GC-ADCs) offers a therapeutic alternative to overcome these adverse effects. Herein, we describe novel classes of GCs that exhibited greater potency than dexamethasone and budesonide, a 100-fold selectivity toward the GR over other nuclear receptors, and no in vitro safety liability in pharmacology assays (hERG, AMES) and that demonstrated a substantial reduction in tumor necrosis factor-α (TNF-α) release in mice challenged with lipopolysaccharide (LPS). The site-specific conjugated GC-ADCs via cathepsin-cleavable linkers were highly stable in plasma and specifically released GCs in antigen-positive cells, suggesting that these novel GCs can serve as ADC payloads to treat autoimmune and inflammatory diseases.We report synthesis of two diastereomeric structures previously proposed for the complex secondary metabolite pseurotin A2. Both structures were accessed from the same building blocks taking advantage of a stereodivergent nickel(II)-diamine-catalyzed 1,4-addition of a chiral 2-alkoxycarbonyl-3(2H)-furanone. Late-stage Csp-Csp3 cross-coupling of a highly functionalized bromoalkyne featured in the pseurotin A2 side-chain assembly. The work supports the 2016 stereochemical revision of pseurotin A2 and represents the first chemical synthesis of this natural product.The synthesis of two series of N-annulated perylene bisimides (PBIs), compounds 1 and 2, is reported, and their self-assembling features are thoroughly investigated by a complete set of spectroscopic measurements and theoretical calculations. The study corroborates the enormous influence that the distance between the PBI core and the peripheral groups exerts on the chiroptical properties and the supramolecular polymerization mechanism. Compounds 1, with the peripheral groups separated from the central PBI core by two methylenes and an ester group, form J-type supramolecular polymers in a cooperative manner but exhibit negligible chiroptical properties. The lack of clear helicity, due to the staircase arrangement of the self-assembling units in the aggregate, justifies these features. In contrast, attaching the peripheral groups directly to the N-annulated PBI core drastically changes the self-assembling properties of compounds 2, which form H-type aggregates following an isodesmic mechanism. These H-type aggregates show a strong aggregation-caused quenching (ACQ) effect that leads to nonemissive aggregates. Chiral (S)-2 and (R)-2 experience an efficient transfer of asymmetry to afford P- and M-type aggregates, respectively, although no amplification of asymmetry is achieved in majority rules or "sergeants-and-soldiers" experiments. A solvent-controlled stereomutation is observed for chiral (S)-2 and (R)-2, which form helical supramolecular polymers of different handedness depending on the solvent (methylcyclohexane or toluene). The stereomutation is accounted for by considering the two possible conformations of the terminal phenyl groups, eclipsed or staggered, which lead to linear or helical self-assemblies, respectively, with different relative stabilities depending on the solvent.Fungal cell wall synthesizing enzymes or remodeling enzymes represent key factors for the interaction of plant pathogen and antifungal agents, which are regarded as potential biocontrol agents. In this study, a novel endo-β-1,3-glucanase from Magnaporthe oryzae was expressed and characterized. The expression of MoGluB was significantly upregulated after 2 days of liquid culture and 48 h after infection, indicating that it may be involved in cell wall reconstitution. Purified MoGluB exhibited high activity on insoluble β-glucans, with a specific activity of 8.18 U/mg toward yeast glucan at pH 9.0 and 50 °C. MoGluB hydrolyzed pachymaran and yeast glucan into oligosaccharides dominated by laminaripentaose, suggesting that it is an endo-β-1,3-glucanase. Saracatinib Incubation of 8 μg of MoGluB with 106 spores/mL resulted in the inhibition of conidial germination and appressorium formation of M. oryzae, illustrating effective biocontrol activity. Hydrolysates of pachymaran induced the expression of defense genes restricting M. oryzae infection in rice plants, indicating an immunostimulatory effect of MoGluB hydrolysates.Current studies in the Li-battery field are focusing on building systems with higher energy density than ever before. The path toward this goal, however, should not ignore aspects such as safety, stability, and cycling life. These issues frequently originate from interfacial instability, and therefore, precise surface chemistry that allows for accurate control of material surface and interfaces is much in demand for advanced battery research. Molecular self-assembly as a surface chemistry tool is considered to surpass many conventional coating techniques due to its intrinsic merits such as spontaneous organization, molecular-scale uniformity, and structural diversity. Recent publications have demonstrated the power of self-assembled monolayers (SAMs) in addressing pressing issues in the battery field such as the chemical stability of Li, but many more investigations are needed to fully explore the potential and impact of this technique on energy storage. This perspective is the first of its kind devoted to SAMs in batteries and related materials. Recent research progress on SAMs in batteries is reviewed and mainly falls in two categories, including the improvement of chemical stability and the regulation of nucleation in conversion electrode reactions. Future applications and consideration of SAMs in energy storage are discussed. We believe these summaries and outlooks are highly stimulative and may benefit future advancements in battery chemistry.Organic reactions in atmospheric particles impact human health and climate, such as by the production of brown carbon. Previous work suggests that reactions are faster in particles than in bulk solutions because of higher reactant concentrations and pronounced surface-mediated processes. Additionally, dialdehydes may have accelerated reactions in particles, as has been shown for the glyoxal reaction with ammonium sulfate (AS). Here, we examine the competition between evaporation and reaction of butenedial, a semivolatile dialdehyde, and reduced nitrogen (NHX) in bulk solutions and levitated particles with mass spectrometry (MS). Pyrrolinone is the major product of butenedial/AS bulk solutions, indicating brown carbon formation via accretion reactions. By contrast, pyrrolinone is completely absent in all MS measurements of comparable levitated particles suspended in a pure N2 stream. Pyrrolinone is only produced in levitated butenedial particles exposed to gas-phase ammonia, without enhanced reaction kinetics previously observed for glyoxal and other systems. Despite butenedial's large Henry's law constant and fast reaction with NHX compared to glyoxal, the brown carbon pathway competes with evaporation only in polluted regions with extreme NHX. Therefore, accurate knowledge of effective volatilities or Henry's law constants for complex aerosol matrices is required when chemistry studied in bulk solutions is extrapolated to atmospheric particles.Confocal Raman spectroscopy (CRS) has shown potential in non-invasive skin analysis. However, current CRS systems have various limitations including a narrow detection band, large size, non-flexibility, slowness, and complexity, which hinder their clinical applications. Herein, we developed a portable ultrawideband CRS system with a fiber-based handheld probe to acquire the Raman spectra in both fingerprint and high wavenumber regions in a fast and quasi-simultaneous way. Dual-wavelength excitation with a dual-passband laser cleaning filter and high-speed fiber array multiplexer was adopted instead of a specialized grating and detector to achieve instant switching between the detection regions and improve system robustness. Preliminary in vivo results demonstrated its depth profiling capability in an ultrawide detection range for stratum corneum thickness, natural moisturizing factor, and water content quantification, indicating its great potential in a wide range of clinical and cosmeceutical applications.