Adamsenanker6258
Combined sewer overflows are contaminated with various micropollutants which pose risk to both environmental and human health. Some micropollutants, such as carbamazepine and sulfamethoxazole, are very persistent and difficult to remove from wastewater. Event loaded vertical-flow constructed wetlands (retention soil filters; RSFs) have proven to be effective in the treatment of combined sewer overflows for a wide range of pollutants. However, little is known about how microbial communities contribute to the treatment efficiency, specifically to the reduction of micropollutants. To the best of our knowledge, this is the first study attempting to close this gap. Microbial communities in pilot-scale RSFs were investigated, which showed explicit grouping of metabolic activity at different filter depths with some differential abundance of identified genera. The highest microbial activity was found in the top layer of 0.75 m deep filters, whereas homogeneous activity dominated in a 0.50 m deep filter, indicating oxygen availability to be a limiting factor of the metabolic activity in RSFs. The removal efficiencies of all investigated organic trace substances were correlated to the utilization of specific carbon sources. Most notable is the correlation between the carbon source glucose-1-phosphate and the removal of metoprolol. The strongest correlations for other substances were the removal of diclofenac to the utilization of the carbohydrate i-erythritole; bisphenol A to carbohydrate α-d-lactose, and 1-H-benzotriazole to carbonic acid D-galacturonic acid. Those results are supported by positive correlations of specific microbial genera with both the utilization of the above mentioned carbon sources and the removal efficiency for the respective micropollutants. Most notable is correlation of Tetrasphaera and the removal of benzotriazole and diclofenac.The onset of coronavirus pandemic has sparked a shortage of facemasks in almost all nations. Without this personal protective equipment, healthcare providers, essential workers, and the general public are exposed to the risk of infection. In light of the aforementioned, it is critical to balance the supply and demand for masks. this website COVID-19 will also ensure that masks are always considered as an essential commodity in future pandemic preparedness. Moreover, billions of facemasks are produced from petrochemicals derived raw materials, which are non-degradable upon disposal after their single use, thus causing environmental pollution and damage. The sustainable way forward is to utilise raw materials that are side-stream products of local industries to develop facemasks having equal or better efficiency than the conventional ones. In this regard, wheat gluten biopolymer, which is a by-product or co-product of cereal industries, can be electrospun into nanofibre membranes and subsequently carbonised at over 700 °C to form a network structure, which can simultaneously act as the filter media and reinforcement for gluten-based masks. In parallel, the same gluten material can be processed into cohesive thin films using plasticiser and hot press. Additionally, lanosol, a naturally-occurring substance, imparts fire (V-0 rating in vertical burn test), and microbe resistance in gluten plastics. Thus, thin films of flexible gluten with very low amounts of lanosol ( less then 10 wt%) can be bonded together with the carbonised mat and shaped by thermoforming to create the facemasks. The carbon mat acting as the filter can be attached to the masks through adapters that can also be made from injection moulded gluten. The creation of these masks could simultaneously be effective in reducing the transmittance of infectious diseases and pave the way for environmentally benign sustainable products.Cattle populations are one of the most important global ecological drivers. The global cattle population tripled during the past century, leading to large impacts on nutrient cycling, greenhouse gas emissions and biodiversity loss. Nonetheless, their populations have not increased uniformly through the last seven decades (1961-2018), with large unexplained variation between years. We hypothesized a main driver for such fluctuation was climate variability and thus examined global and national level relationships between cattle population growth and precipitation anomalies for the period 1961-2017. We showed that the variation in the global cattle population growth rate was related to precipitation anomalies following a distinctive parabolic relationship, where extreme wetness or dryness decreased population growth. When the analysis was downscaled to the national level, we found the strength of such relationship to be determined by the background climate and management intensity. Countries in drier climates and with less intensive cattle management showed the largest susceptibility to extreme annual precipitation. We propose a general model to explain the relationship between precipitation extremes and cattle populations at multiple scales, based on ecological processes applicable to grazing systems.In nematode Caenorhabditis elegans, mir-35, a microRNA molecule, was involved in the control of response to nanopolystyrene. Exposure to nanopolystyrene (100 nm) could significantly increase the mir-35 expression. However, the underlying mechanism for this role of mir-35 remains largely unclear. Based on analysis of expression levels, phenotypes, and genetic interactions, we examined the underlying mechanism of intestinal mir-35 in regulating the response to nanopolystyrene. In nematodes, we here found that mir-35 acted in the intestine to regulate the response to nanopolystyrene. In the intestine, NDK-1, homolog of NM23-H1, was identified as the direct target of mir-35, suggesting that intestinal mir-35 regulated the response to nanopolystyrene by suppressing the NDK-1 function. Moreover, intestinal NDK-1 could regulate the response to nanopolystyrene by suppressing the function of FOXO transcriptional factor DAF-16 in the insulin signaling pathway. In nanopolystyrene exposed nematodes, kinase suppressors of Ras (KSR-1 and KSR-2) were further identified as downstream targets of intestinal NDK-1. Moreover, DAF-16 functioned with KSR-1 or KSR-2 in different pathways to regulate the response to nanopolystyrene. Therefore, we have identified an intestinal signaling cascade of mir-35-NDK-1-DAF-16/KSR-1/2 to be required for the control of response to nanopolystyrene. Our results provided an important molecular basis for intestinal response to nanopolystyrene in nematodes.