Finkarthur6938

Z Iurium Wiki

Verze z 22. 9. 2024, 21:22, kterou vytvořil Finkarthur6938 (diskuse | příspěvky) (Založena nová stránka s textem „The extraordinary rate accelerations and control of reactivity exhibited by enzymes have long inspired efforts to develop synthetic catalysts. Foldamers, w…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The extraordinary rate accelerations and control of reactivity exhibited by enzymes have long inspired efforts to develop synthetic catalysts. Foldamers, which are oligomers with a strong tendency to adopt a specific conformation, represent unique platforms for efforts to harness principles of enzyme function for catalyst design. Well-defined helical structures that have been identified in several foldamer families can serve as scaffolds for the predictable spatial arrangement of functional groups. The chirality of these helices offers a basis for asymmetric catalysis. Thus, foldamer-based approaches to catalyst development represent an attractive alternative to well-developed strategies involving small molecules or conventional peptides.Highly selective adsorptive separation of olefin/paraffin through porous materials can produce high purity olefins in a much more energy-efficient way than the traditional cryogenic distillation. Here we report an ultramicroporous cobalt gallate metal-organic framework (Co-gallate) for the highly selective sieving separation of propylene/propane at ambient conditions. This material possesses optimal pore structure for the exact confinement of propylene molecules while excluding the slightly large propane molecules, as clearly demonstrated in the neutron diffraction crystal structure of Co-gallate⊃0.38C3D6. Its high separation performance has been confirmed by the gas sorption isotherms and column breakthrough experiments to produce the high purity of propylene (97.7%) with a high dynamic separation productivity of 36.4 cm3 cm-3 under ambient conditions. The gas adsorption measurement, pore size distribution, and crystallographic and modeling studies comprehensively support the high sieving C3H6/C3H8 separation in this MOF material. It is stable under different environments, providing its potential for the industrial propylene purification.In addition to their fungicidal activity, many triazole fungicides function as plant regulators, which might impose adverse effects on the growth and development of crops. For chiral triazole fungicides, these effects can be alleviated by applying stereoisomers with high fungicidal and low regulator activities. This study investigated the stereoselectivity of four stereoisomers and the racemate of metconazole (2.5 g/100 kg seeds) on emergence and growth of seedlings (BBCH 01-14) in wheat. Wheat seedlings, coated with cis-1S,5R-metconazole, had a significantly lower seedling emergence ratio and shoot length than other metconazole treatments; however, the opposite effects were observed in the trans-1S,5S-metconazole treatment. With regard to the hormonal level, enzyme activity, and gene transcription of gibberellin (GA) and jasmonic acid (JA), cis-1S,5R-metconazole treatment inhibited GA biosynthesis while trans-1S,5S-metconazole treatment promoted GA biosynthesis. Moreover, cis-1S,5R-metconazole, trans-1S,5S-metconazole, trans-1R,5R-metconazole, and racemate treatments increased JA biosynthesis. The oxidative stress responses in trans-1R,5R-metconazole and racemate treatments were more intensive. Therefore, compared with the control, treatment with cis-1R,5S-metcoanzole exhibited minimal influence on wheat seedling growth. The results showed that the application of pure cis-1R,5S-metcoanzole (instead of the racemate) in agricultural management could decrease the risks associated with crop growth and developmental damage.Mimicking nature's ability to orchestrate molecular self-assembly in living cells is important yet challenging. Molecular self-assembly has found wide applications in cellular activity control, drug delivery, biomarker imaging, etc. Nonetheless, examples of suborganelle-confined supramolecular self-assembly are quite rare and research in this area remains challenging. Herein, we have presented a new strategy to program supramolecular self-assembly specifically in mitochondria by leveraging on a unique enzyme SIRT5. SIRT5 is a mitochondria-localized enzyme belonging to a family of NAD+-dependent histone deacetylases. Accumulating studies suggest that SIRT5 is involved in regulating diverse biological processes, such as reactive oxygen defense, fatty acid metabolism, and apoptosis. In this study, we designed a novel class of succinylated peptide precursors that can be transformed into self-assembling building blocks through SIRT5 catalysis, leading to the formation of supramolecular nanofibers in vitro and in living cells. The increased hydrophobicity arising from self-assembly remarkably enhanced the fluorescence of nitrobenzoxadiazole (NBD) in the nanofibers. With this approach, we have enabled activity-based imaging of SIRT5 in living cells for the first time. Moreover, SIRT5-mediated peptide self-assembly was found to depolarize mitochondria membrane potential and promote ROS formation. Coincubation of the peptide with three different chemotherapeutic agents significantly boosted the anticancer activities of these drugs. Our work has thus illustrated a new way of mitochondria-confined peptide self-assembly for SIRT5 imaging and potential anticancer treatment.When exposed to UV light, single crystals of the vinyl azides 3-azido-1-phenylpropenone (1a), 3-azido-1-(4-methoxyphenyl)propenone (1b), and 3-azido-1-(4-chlorophenyl)propenone (1c) exhibit dramatic mechanical effects by cracking or bending with the release of N2. Mechanistic studies using laser flash photolysis, supported by quantum mechanical calculations, show that each of the vinyl azides degrades through a vinylnitrene intermediate. However, despite having very similar crystal packing motifs, the three compounds exhibit distinct photomechanical responses in bulk crystals. While the crystals of 1a delaminate and release gaseous N2 indiscriminately under paraffin oil, the crystals of 1b and 1c visibly expand, bend, and fracture, mainly along specific crystallographic faces, before releasing N2. The photochemical analysis suggests that the observed expansion is due to internal pressure exerted by the gaseous product in the crystal lattices of these materials. Lattice energy calculations, supported by nanoindentation experiments, show significant differences in the respective lattice energies. The calculations identify critical features in the crystal structures of 1b and 1c where elastic energy accumulates during gas release, which correspond to the direction of the observed cracks. This study highlights the hitherto untapped potential of photochemical gas release to elicit a photomechanical response and motility of photoreactive molecular crystals.Continuous cropping obstacles seriously affect the sustainable production of tomatoes (Solanum lycopersicum L.). Researchers have found that intercropping with garlic (Allium sativum L.) could alleviate tomato continuous cropping obstacles. Diallyl disulfide (DADS) is the main allelochemical in garlic. However, the mechanism of DADS in alleviating tomato continuous cropping obstacles is still unknown. In this research, aqueous extracts of tomato continuous cropping soil were used to simulate the continuous cropping condition of tomato. Our results showed that DADS increased root activity and chlorophyll content and improved the activity of antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), and phenylalanine ammonia-lyase (PAL)) and the metabolism of nonenzymatic antioxidants (glutathione (GSH) and oxidized glutathione (GSSG)) in tomato plants. selleck DADS treatment reduced the content of fatty acid esters in tomato root exudates (e.g., palmitate methyl ester, palmitoleic acid methyl ester, oleic acid methyl ester) and increased the level of substances such as dibutyl phthalate and 2,2'-methylenebis(6-tert-butyl-4-methylphenol). The higher concentrations of palmitate methyl ester inhibited tomato hypocotyl growth, while oleic acid methyl ester inhibited tomato root growth. Moreover, the application of DADS significantly inhibited the secretion of these esters in the root exudates. Therefore, it suggests that DADS may increase tomato resistance and promote tomato plant growth by increasing root activity and photosynthetic capacity and development to reduce autotoxicity of tomato.Hydroxyl radicals (·OH) exert a strong impact on the carbon cycle due to their nonselective and highly oxidizing nature. Reduced iron-containing clay minerals (RIC) are one of the major contributors to the formation of ·OH in dark environments, but their interactions with humic acids (HA) are poorly known. Here, we investigate the mutual interactions between RIC and HA under dark and oxygenated conditions. HA decreased the oxidation rate of structural Fe(II) in RIC but significantly promoted the ·OH yield. HA dissolved a fraction of Fe(II) from RIC to form an aqueous Fe(II)-HA complex. ·OH were generated through both heterogeneous (through oxidation of structural Fe(II)) and homogeneous pathways (through oxidation of aqueous Fe(II)-HA species). RIC-mediated ·OH production by providing H2O2 to react with Fe(II)-HA and electrons to regenerate Fe(II)-HA. This highly efficient homogeneous pathway was responsible for increased ·OH yield. Abundant ·OH significantly decreased the molecular size, bleached chromophores, and increased the oxygen-containing functional groups of HA. These molecular changes of HA resembled photochemical transformation of HA. The mutual interaction between RIC and HA in dark and redox-fluctuating environments provides a new pathway for fast turnover of recalcitrant organic matters in clay- and HA-rich ecosystems such as tropical forest soils and tidal marsh sediments.A series of aluminate-based oxyhydrides, Sr3-xA x AlO4H (A = Ca, Ba; x = 0, 1), has been synthesized by high-temperature reaction of oxide and hydride precursors under a H2 atmosphere. Their crystal structures determined via X-ray and neutron powder diffraction are isostructural with tetragonal Sr3AlO4F (space group I4/mcm), consisting of (Sr1-x/3Ax/3)2H layers and isolated AlO4 tetrahedra. Rietveld refinement based on the diffraction patterns and bond-valence-sum analysis show that Ba preferentially occupies the 10-coordinated Sr1 sites, while Ca strongly prefers to occupy the 8-coordinated Sr2 sites. Luminescence owing to the 4f-5d transition of Eu2+ or Ce3+ was observed from Eu- and Ce-doped samples, Sr3-x-yA x B y AlO4H (A = Ca, Ba; B = Eu, Ce; x = 0, 1, y = 0.02), under excitation of near-ultraviolet light. Compared with its fluoride analogue, Sr3AlO4HCe3+ shows red shifts of both the excitation and emission bands, which is consistent with the reported hydride-based phosphors and can be explained by the covalency of the hydride ligands. The observed luminescence spectra can be decomposed into two sets of sub-bands corresponding to Ce3+ centers occupying Sr1 and Sr2 sites with distinctly different Stokes shifts (1.27 and 0.54 eV, respectively), as suggested by the results of constrained density functional theory (cDFT). The cDFT results also suggest that the large shift for Ce3+ at Sr1 is induced by large distortion of the coordinated structure with shortening of the H-Ce bond in the excited state. The current findings expand the class of oxyhydride materials and show the potential of hydride-based phosphors for optical applications.

Autoři článku: Finkarthur6938 (Kaplan Chapman)