Kenneybattle6230

Z Iurium Wiki

Verze z 22. 9. 2024, 21:12, kterou vytvořil Kenneybattle6230 (diskuse | příspěvky) (Založena nová stránka s textem „We experimentally demonstrate a pump-pulse-induced conversion of noise into solitons in multimode optical fibers. The process is based on the recently disc…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

We experimentally demonstrate a pump-pulse-induced conversion of noise into solitons in multimode optical fibers. The process is based on the recently discovered phenomenon of soliton self-mode conversion, where a pump soliton in a higher-order spatial mode crafts another well-defined soliton, originating purely from noise, in a lower-order mode at a longer wavelength through intermodal Raman scattering. The lack of the need for any seed or cavity feedback demonstrates that soliton self-mode conversion is a fundamentally unavoidable, but nevertheless tailorable and hence useful, self-organizing nonlinear optical effect capable of turning noise into transform limited solitons.A proposal toward the enhancement in the sensitivity of a fiber-based surface plasma resonance (SPR) refractive index (RI) sensor is explored experimentally using a Bessel-like beam as the input source. We splice a section of single-mode fiber and a section of multimode fiber to construct the Bessel-like beam, which contains a series of concentric rings for the consistency of the resonance angle configuration to improve the performance of the SPR sensor. We fabricate a dual-truncated-cone (DTC) structure of the fiber to excite and receive the SPR signals. The larger the number of concentric rings, the higher the sensitivity. The number of concentric ring is determined by the length of the multimode fiber. When the grinding angle of the DTC-sensing probe is 15° and the length of the multimode fiber is 500 µm, the maximum testing average sensitivity is 6908.3 nm/RIU, which is more sensitive than the previous SPR sensor introduced by the Gaussian beam as the input source in multimode fibers.We provide corrected equations for our previous publication [Opt. Express29, 9332(2021)10.1364/OE.420003].A novel bidirectional operator marching method based on the Dirichlet-to-Neumann (DtN) mapping for three-dimensional optical waveguide structures is developed and implemented using iterative methods. The backward propagation wave is integrated into the classical operator marching approach which represents the forward propagating wave. The bidirectional range marching formulas are exact for each range-independent piece and a large range step is possible in both directions. The validity and effectiveness of our proposed method are verified by analyzing uniform waveguides and longitudinal waveguides with varying refractive indices.We study topological states of honeycomb photonic crystals in the absence of inversion symmetry using plane wave expansion and finite element methods. The breaking of inversion symmetry in honeycomb lattice leads to contrasting topological valley indices, i.e., the valley-dependent Chern numbers in momentum space. We find that the topological corner states appear for 60° degree corners, but absent for other corners, which can be understood as the sign flip of valley Chern number at the corner. Our results provide an experimentally feasible platform for exploring valley-dependent higher-order topology in photonic systems.Focal modulation microscopy (FMM) has gained significant interest in biological imaging. However, the spatial resolution and penetration depth limit the imaging quality of FMM due to the strong scattering background. Here, we introduce FMM with a Tai Chi aperture (TCFMM) based on diffraction theory to improve the spatial resolution. The results show that the transverse resolution is improved by 61.60% and 41.37% in two orthogonal directions, and the axial resolution is improved by 29.67%, compared with confocal microscopy (CM). The signal background ratio (SBR) of TCFMM is increased by 23.26% compared with CM and remains nearly the same compared with FMM using D-shape apertures (DFMM). These improvements in spatial resolution and SBR indicate that TCFMM has potential in deep tissue imaging.We report on the feasibility of short-wavelength transmission window modification in anti-resonant hollow core fibers using post-processing by hydrofluoric (HF) acid etching. Direct drawing of stacked anti-resonant hollow core fibers with sub-micron thin cladding capillary membranes is technologically challenging, but so far this has been the only proven method of assuring over an octave-spanning transmission windows across the visible and UV wavelengths. In this study we revealed that low HF concentration allows us to reduce the thickness of the cladding capillary membranes from the initial 760 nm down to 180 nm in a controlled process. The glass etching rates have been established for different HF concentrations within a range non-destructive to the anti-resonant cladding structure. Etching resulted in spectral blue-shifting and broadening of anti-resonant transmission windows in all tested fiber samples with lengths between 15 cm and 75 cm. Spectrally continuous transmission, extending from around 200 nm to 650 nm was recorded in 75 cm long fibers with cladding membranes etched down to thickness of 180 nm. The experiment allowed us to verify the applicability and feasibility of controlling a silica fiber post-processing technique, aimed at broadening of anti-resonant transmission windows in hollow core fibers. A practical application of the processed fiber samples is demonstrated with their simple butt-coupling to light-emitting diodes centered at various ultraviolet wavelengths between 265 nm and 365 nm.This work focuses on the contribution of modelling for the interpretation of multi- or hyperspectral optical images for the detection, characterisation and quantification of oil spills. Many parameters contribute to the spectral signature of an oil layer on the sea surface the optical properties of the water column and of the oil, the film thickness, the surface roughness, the atmospheric radiance reaching the surface (direct and diffuse components), the geometry of observation and illumination. The number of these contributors and their combinations make the analysis of the spectral variability of oil signatures at the sea surface complex. Modelling approaches allow us to consider all those parameters and can then provide useful information to improve the interpretation of optical images. The model presented in this paper simulates the radiance of an oil layer from visible to short wave infrared spectral domains, taking into account all the above-mentioned parameters. The damping influence of the oil layer on sea surface waves is also considered. Comparisons of the simulations with in situ measurements shows a good overall agreement despite the lack of knowledge of some input parameters of the model. In combination with laboratory and in-the-field measurements, the model is then used to assess the expected contrast between water and oil and to estimate oil slick volume.Holographic microscopy combined with forward modeling and inference allows colloidal particles to be characterized and tracked in three dimensions with high precision. selleck kinase inhibitor However, current models ignore the effects of optical aberrations on hologram formation. We investigate the effects of spherical aberration on the structure of single-particle holograms and on the accuracy of particle characterization. We find that in a typical experimental setup, spherical aberration can result in systematic shifts of about 2% in the inferred refractive index and radius. We show that fitting with a model that accounts for spherical aberration decreases this aberration-dependent error by a factor of two or more, even when the level of spherical aberration in the optical train is unknown. With the new generative model, the inferred parameters are consistent across different levels of aberration, making particle characterization more robust.Conditions of the digital recording of the fringe pattern determine the phase reconstruction procedure, which in turn directly shapes the final accuracy and throughput of the full-field (non-scanning) optical measurement technique and defines the system capabilities. In this way, the fringe pattern analysis plays a crucial role in the ubiquitous optical measurements and thus is under constant development focused on high temporal/spatial resolution. It is especially valuable in the quantitative phase imaging technology, which emerged in the high-contrast label-free biomedical microscopy. In this paper, I apply recently blossomed two-frame phase-shifting techniques to the QPI and merge them with advanced adaptive interferogram pre-filtering algorithms. Next, I comprehensively test such frameworks against classical and adaptive single-shot methods applied for phase reconstruction in dynamic QPI enabling highest phase time-space-bandwidth product. The presented study systematically tackles important question what is the gain, if any, in QPI realized by recording two phase-shifted interferograms? Counterintuitively, the results show that single-shot demodulation exhibited higher phase reconstruction accuracy than two-frame phase-shifting methods in low and medium interferogram signal-to-noise ratio regimes. Thus, the single-shot approach is promoted due to not only high temporal resolution but also larger phase-information throughput. Additionally, in the majority of scenarios, the best option is to shift the paradigm and employ two-frame pre-filtering rather than two-frame phase retrieval. Experimental fringe analysis in QPI of LSEC/RWPE cell lines successfully corroborated all novel numerical findings. Hence, the presented numerical-experimental research advances the important field of fringe analysis solutions for optical full-field measurement methods with widespread bio-engineering applications.Registration and reconstruction of high-quality digital holograms with a large view angle are intensive computer tasks since they require the space-bandwidth product (SBP) of the order of tens of gigapixels or more. This massive use of SBP severely affects the storing and manipulation of digital holograms. In order to reduce the computer burden, this work focuses on the generation and reconstruction of very large horizontal parallax only digital holograms (HPO-DHs). It is shown that these types of holograms can preserve high quality and large view angle in x direction while keeping a low use of SBP. This work first proposes a numerical technique that allows calculating very large HPO-DHs with large pixel size by merging the Fourier holography and phase added stereogram algorithm. The generated Fourier HPO-DHs enable accurate storing of holographic data from 3D objects. To decode the information contained in these Fourier HPO-DHs (FHPO-DHs), a novel angular spectrum (AS) technique that provides an efficient use of the SBP for reconstruction is proposed. Our reconstruction technique, which is called compact space bandwidth AS (CSW-AS), makes use of cylindrical parabolic waves that solve sampling issues of FHPO-DHs and AS. Moreover, the CSW-AS allows for implementing zero-padding for accurate wavefield reconstructions. Hence, suppression of aliased components and high spatial resolution is possible. Notably, the imaging chain of Fourier HPO-DH enables efficient calculation, reconstruction and storing of HPO holograms of large size. Finally, the accuracy and utility of the developed technique is proved by both numerical and optical reconstructions.

Autoři článku: Kenneybattle6230 (Daugaard Grant)