Kochboesen2069

Z Iurium Wiki

Verze z 22. 9. 2024, 21:12, kterou vytvořil Kochboesen2069 (diskuse | příspěvky) (Založena nová stránka s textem „The noise floor of the electrical substitution bolometer is on the order of 10 pW/Hz½ and its response is expected to be linear from the noise floor to 1…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The noise floor of the electrical substitution bolometer is on the order of 10 pW/Hz½ and its response is expected to be linear from the noise floor to 1 mW. A direct comparison between a pyroelectric standard detector and the ES-FTS has been performed, and experimental results reported here show great potential for this technique.A practical, broadband, all-optical linearization concept for a Mach-Zehnder modulator (MZM) is proposed and demonstrated. The unique transmitter design includes an amplitude modulated (AM) standard MZM with two optical outputs, where the alternative (or complimentary) output is combined with the laser carrier to create a linearizing optical local oscillator, which when coherently combined with the AM signal fully cancels 3rd order intermodulation distortion components. Using this scheme, record linearity is achieved for a non-amplified RF photonic link, with spurious free dynamic range (SFDR) of 118.5 dB.Hz2/3 and 123 dB.Hz2/3 for single and dual fiber/photodetector schemes.We propose a confocal hyperspectral microscopic imager (CHMI) that can measure both transmission and fluorescent spectra of individual microalgae, as well as obtain classical transmission images and corresponding fluorescent hyperspectral images with a high signal-to-noise ratio. Thus, the system can realize precise identification, classification, and location of microalgae in a free or symbiosis state. The CHMI works in a staring state, with two imaging modes, a confocal fluorescence hyperspectral imaging (CFHI) mode and a transmission hyperspectral imaging (THI) mode. The imaging modes share the main light path, and thus obtained fluorescence and transmission hyperspectral images have point-to-point correspondence. In the CFHI mode, a confocal technology to eliminate image blurring caused by interference of axial points is included. The CHMI has excellent performance with spectral and spatial resolutions of 3 nm and 2 µm, respectively (using a 10× microscope objective magnification). To demonstrate the capacity and versatility of the CHMI, we report on demonstration experiments on four species of microalgae in free form as well as three species of jellyfish with symbiotic microalgae. In the microalgae species classification experiments, transmission and fluorescence spectra collected by the CHMI were preprocessed using principal component analysis (PCA), and a support vector machine (SVM) model or deep learning was then used for classification. The accuracy of the SVM model and deep learning method to distinguish one species of individual microalgae from another was found to be 96.25% and 98.34%, respectively. Also, the ability of the CHMI to analyze the concentration, species, and distribution differences of symbiotic microalgae in symbionts is furthermore demonstrated.Quantum vortices are the analogue of classical vortices in optics, Bose-Einstein condensates, superfluids and superconductors, where they provide the elementary mode of rotation and orbital angular momentum. While they mediate important pair interactions and phase transitions in nonlinear fluids, their linear dynamics is useful for the shaping of complex light, as well as for topological entities in multi-component systems, such as full Bloch beams. Here, setting a quantum vortex into directional motion in an open-dissipative fluid of microcavity polaritons, we observe the self-splitting of the packet, leading to the trembling movement of its center of mass, whereas the vortex core undergoes ultrafast spiraling along diverging and converging circles, in a sub-picosecond precessing fashion. This singular dynamics is accompanied by vortex-antivortex pair creation and annihilation and a periodically changing topological charge. The spiraling and branching mechanics represent a direct manifestation of the underlying Bloch pseudospin space, whose mapping is shown to be rotating and splitting itself. Its reshaping is due to three simultaneous drives along the distinct directions of momentum and complex frequency, by means of the differential group velocities, Rabi frequency and dissipation rates, which are natural assets in coupled fields such as polaritons. This state, displaying linear momentum dressed with oscillating angular momentum, confirms the richness of multi-component and open quantum fluids and their innate potentiality to implement sophisticated and dynamical topological textures of light.We investigate the electromagnetically induced transparency (EIT) and Autler Townes (AT) splitting spectrum with a four-level Rydberg atom by pole analysis of the probe coherence. A pair of poles corresponding to the two peaks of the spectral splitting is observed. ETC-159 mw The spectral split or the pole positions are affected by the microwave intensity (MW) and the detuning between the probe and the coupling laser. In the absence of any detuning, the two poles coincide and separate again on the imaginary axis of the complex detuning plane at weak MW field. The two poles do not coincide when the probe (coupling) laser is detuned for scanning the coupling (probe) laser frequency. However, under finite detuning, the two poles approach the nearest distance in the absence of any splitting and are separated again in the direction parallel to the imaginary axis. The spectral analysis of the poles provides an alternate way to establish the relationship between the splitting and the intensity of MW, which may play a role in the application of atomic-based MW measurements.We propose and demonstrate a green semipolar (20-21) micro-light emitting diode (LED) acting as a high speed visible light communication (VLC) photodiode (PD). The micro-LED PD has the optical-to-electrical (OE) response of 228 MHz. A record data rate of 540 Mbit/s in on-off-keying (OOK) format with free-space transmission distance of 1.1 m was achieved, fulfilling the pre-forward error correction (FEC) limit. Many transmitters (Txs) and receivers (Rxs) is required to support the high density pico/femto-cells in future wireless networks, as well as the Internet-of-Things (IOT) networks. The proposed work could allow the realization of a low-cost, small-footprint and a high level of integration of VLC Txs and Rxs on the same platform.Mid-infrared absorption spectroscopy is an effective method for detecting analyte fingerprints without labeling, but the inherent loss of metals in current methods is a main issue. Here, a sensing scheme was proposed that uses an all-dielectric grating metasurface and angular scanning of polarized light, and then it was verified by numerical simulation. The proposed fingerprint detection scheme could effectively couple a guided-mode resonance spectrum peak with the characteristic peak of the analyte's phonon-polariton in the mid-infrared region, significantly enhancing the interaction between light and the analyte. The novel scheme would realize broadband enhancement to detect a variety of substances, and facilitate mid-infrared sensing and analysis of trace substances.We introduce the space-time (ST) vector light sheet. This unique one-dimensional ST wave packet is characterized by classical entanglement (CE), a correlation between at least two non-separable intrinsic degrees-of-freedom (DoFs), which in this case are the spatiotemporal DoFs in parallel with the spatial-polarization DoFs. We experimentally confirm that the ST vector light sheet maintains the intrinsic features of the uniformly polarized ST light sheet, such as near-diffraction-free propagation and self-healing, while also maintaining the intrinsic polarization structure of common vector beams, such as those that are radially polarized and azimuthally polarized. We also show that the vector beam structure of the ST vector light sheet is maintained in the subluminal and superluminal regimes.Diffractive optical elements (DOEs) are widely applied as compact solutions for desired light manipulations via wavefront shaping. Recent advanced chip applications further require their feature sizes to move down to the subwavelength, which inevitably brings forth vectorial effects of optical fields and makes the typical scalar-based theory invalid. However, simulating and optimizing their vectorial fields, which are associated with billions of adjustable parameters in the optical element, are difficult to do, because of the issues of numerical stability and the highly-demanding computational cost. To address this problem, this research proposes an applicable algorithm by means of a wave-vector (k) series approximation of vectorial optical fields. On the basis of the semi-analytical rigorous coupled wave analysis (RCWA), an adequate selection scheme on k-series enables computationally efficient yet still predictive calculations for DOEs. The performance estimations for exemplary designs by the finite difference time domain (FDTD) method show that the predicted intensity profiles by the proposed algorithm agree with the target by just a fractional error. Together with optimizing the geometrical degrees of freedom (e.g., DOE depth h) as compensation for errors from the truncation of k-series, the algorithm demonstrates its outperformance by one or two orders of magnitude in accuracy versus the scalar-based model, and demands only a reasonable computational resource.We demonstrate a compact and low-cost all-fiber-based locking setup for frequency-noise suppression of a 420 nm external-cavity diode laser. Frequency noise reduction in the 100 Hz to 800 kHz range is demonstrated up to 40 dB associated with a linewidth narrowing from 850 kHz to 20 kHz for 10 ms integration time. This simple locking scheme might be implemented for a large range of wavelengths and can be integrated on a small footprint for embedded applications requiring narrow linewidth blue laser diodes.We report on helicity sensitive photovoltaic terahertz radiation response of a carbon nanotube made in a configuration of a field-effect transistor. We find that the magnitude of the rectified voltage is different for clockwise and anticlockwise circularly polarized radiation. We demonstrate that this effect is a fingerprint of the plasma waves interference in the transistor channel. We also find that the presence of the helicity- and phase-sensitive interference part of the photovoltaic response is a universal phenomenon which is obtained in the systems of different dimensionality with different single-particle spectrum. Its magnitude is a characteristic of the plasma wave decay length. This opens up a wide avenue for applications in the area of plasmonic interferometry.We demonstrate supermode-based second harmonic generation in an integrated nonlinear interferometer made of linear and nonlinear directional couplers. We use a fully-fibered pump shaper to demonstrate second harmonic generation pumped by the symmetric or anti-symmetric fundamental spatial modes. The selection of the pumping mode and thus of a specific SHG spectral profile is achieved through the selection of the fundamental wavelength and via a robust phase setting scheme. We use two methods either post-selecting or actively setting the pumping mode. Such modal phase matching paves the way for classical and quantum applications of coupled nonlinear photonic circuits, where multimode excitation, encoding and detection are a route for multiplexing and scaling up light-processing.

Autoři článku: Kochboesen2069 (Mejer Damborg)