Ankerbartlett9318
OPEFB fibers could be valorized to obtain both activated and non-activated CNPs that had the potential efficiency to remove heavy metals, including copper (Cu), lead (Pb), iron (Fe), and zinc (Zn) at certain times. Based on the analysis of the Langmuir and Freundlich models, the activated and non-activated CNPs were found to have shown favorable adsorption to Cu, Pb, and Fe, with a percentage of heavy metal removal of over 84%. The adsorption of heavy metals was carried out via a chemical process.A continuous-flow Anaerobic/Anoxic/Oxic (A2/O) system was operated at different organic concentrations to systematically investigate the effect on the nutrient removal, secretion characteristics of extracellular polymer, phosphorus forms transformation and changes in functional flora in this system. The results showed that high organic loading was more conducive to promote the secretion of extracellular polymeric substance (EPS), the increase of polysaccharide content was more obvious compared with protein, the impact of organic loading on the components of loosely bound EPS (LB-EPS) was higher than that of tight-bound EPS (TB-EPS). Phosphorus in sludge floc mainly existed in the form of inorganic phosphorus (IP), and IP mainly existed in the form of apatite inorganic phosphorus (AP). High organic load showed higher phosphorus storage in EPS, and the phosphorus content in EPS was positively correlated with the content of EPS. Non-apatite phosphorus (NAIP) content played an important role in the extracellular dephosphorization. The abundance of Nitrosomonas and Nitrospira responsible for nitrification decreased with the increase in organic loading. The group of denitrifiers was large, and Azospira was the most abundant genus among them. Dechloromonas, Acinetobacter, Povalibacter, Chryseolinea and Pirellula were the functional genera closely associated with phosphorus removal.Organic esters of phosphoric acid and other organophosphorous compounds are enzymatically hydrolyzed during wastewater treatment by microbial phosphoesterases, especially by phosphomonoesterase (phosphatase). For physiological reasons, the enzyme is inhibited by its main inorganic reaction product, ortho-phosphate. It is known that oxyanions of transition metals, resembling the molecular topology of ortho-phosphate, e.g. vanadate and tungstate, are more potent inhibitors for microbial alkaline phosphatase than phosphate. To proof this effect for activated sludge, a multitude of samples from a communal wastewater treatment plant was exposed at pH values from 7.00 to 8.50 to tungstate, vanadate, and molybdate. Inhibition effects were determined by a sensitive fluorimetric microplate assay and characteristic parameters (IC50 and IC20 concentrations) were deduced from modelled dose-response functions. Mean inhibitor concentrations (in brackets ranges) causing 50% inactivation (IC50) at pH 7.50 were 2.5 (1.3-4.1) μM tungstate, 2.9 (1.6-5.5) μM vanadate, and 41.4 (33.6-56.7) μM molybdate. Vanadate and tungstate concentrations between 0.6 and 0.7 μM provoked a 20% (IC20) inhibition. The inhibition efficiency of tungstate and molybdate decreased with increasing pH, whereas vanadate reacted pH independently. These results underline the necessity to consider enzyme inhibition assessing the limitations and potentials of biological wastewater treatment processes.Previous studies have documented that Chlorella sorokiniana could grow well on cooking cocoon wastewater (CCW) with a maximum biomass of 0.49 g/L. In order to further enhance the biomass production and nutrient removals, a bubble-column bioreactor was designed and performed to cultivate C. sorokiniana in CCW, and two main cultivation parameters were investigated in this work. Results showed that a maximum algal biomass, specific growth rate, and biomass productivity of 2.83 g/L, 0.854 d-1, and 476.25 g/L/d, respectively, were achieved when this alga was cultivated in the bioreactor with an initial cell density of 0.8 g/L and an aeration rate of 3.34 L air/L culture/min; meanwhile, removal efficiencies of ammonium, total nitrogen, total phosphorus, and chemical oxygen demand reached 97.96, 85.66, 97.96, and 86.43%, respectively, which were significantly higher than that obtained in our previous studies. Moreover, chemical compositions in the algal cells varied with the changes of cultivation conditions (i.e., initial cell density and aeration rate). Thus, it is concluded that (1) the bubble-column bioreactor was suitable for cultivation of C. sorokiniana coupled with the CCW treatment and (2) initial cell density and aeration rate affected the biomass production, nutrient removals and chemical compositions of this alga.Membrane bioreactor (MBR) technology has been paid extensive attention for wastewater treatment because of its advantages of high effluent quality and minimized occupation space and sludge production. However, the membrane fouling is always an inevitable problem, which causes high operation and maintenance costs and prevents the wide use of MBR technology. The membrane biofouling is the most complicated and has relatively slow progress among all types of fouling. In recent years, many membrane biofouling control methods have been developed. Different from the physical or chemical methods, the biological-based strategies are not only more effective for membrane biofouling control, but also milder and more environment-friendly and, therefore, have been increasingly employed. This paper mainly focuses on the mechanism, unique advantages and development of biological-based control strategies for MBR membrane biofouling such as quorum quenching, uncoupling, flocculants and so on. The paper summarizes the up-to-date development of membrane biofouling control strategies, emphasizes the advantages and promising potential of biological-based ones, and points out the direction for future studies.The most recent numerical models of urban drainage allow the integration of runoff from roads with the network of sewer pipes, thus evolving towards a holistic version of the system. A fundamental part of this integration is the capture of stormwater in urban drain inlets. These studies have recently increased, resulting in different methodologies to represent the uptake process and making it difficult to apply unified or general formulations. Therefore, this document intends to be a review of the most representative experimental and numerical studies on the capture of rainwater through grates. In addition, the review includes the proposed methodologies for estimating the flow captured by urban storm drains to define a starting point for new and complementary studies to be carried out by researchers, manufacturers, and operators involved in public drainage service systems. Particularly in Latin America, research on the subject is limited even though it is a highly urbanized region. In this context, this document has an additional interest in presenting a particular analysis of the concept of urban drainage in Latin American cities.Brainstem tissue microstructural properties change across the adult lifespan. However, studies elucidating the biological processes that govern brainstem maturation and degeneration in-vivo are lacking. In the present work, conducted on a large cohort of 140 cognitively unimpaired subjects spanning a wide age range of 21 to 94 years, we implemented a multi-parameter approach to characterize the sex- and age differences. In addition, we examined regional correlations between myelin water fraction (MWF), a direct measure of myelin content, and diffusion tensor imaging indices, and transverse and longitudinal relaxation rates to evaluate whether these metrics provide information complementary to MWF. We observed region-dependent differences in myelin content and axonal density with age and found that both exhibit an inverted U-shape association with age in several brainstem substructures. We emphasize that the microstructural differences captured by our distinct MRI metrics, along with their weak associations with MWF, strongly indicate the potential of using these outcome measures in a multi-parametric approach. Furthermore, our results support the gain-predicts-loss hypothesis of tissue maturation and degeneration in the brainstem. BAY-985 cell line Indeed, our results indicate that myelination follows a temporally symmetric time course across the adult life span, while axons appear to degenerate significantly more rapidly than they mature.Aging is a factor associated with poor prognosis in glioblastoma (GBM). It is therefore important to understand the molecular features of aging contributing to GBM morbidity. TP73-AS1 is a long noncoding RNA (lncRNA) over expressed in GBM tumors shown to promote resistance to the chemotherapeutic temozolomide (TMZ), and tumor aggressiveness. How the expression of TP73-AS1 is regulated is not known, nor is it known if its expression is associated with aging. By analyzing transcriptional data obtained from natural and pathological aging brain, we found that the expression of TP73-AS1 is high in pathological and naturally aging brains. YY1 physically associates with the promoter of TP73-AS1 and we found that along with TP73-AS1, YY1 is induced by TMZ. We found that the TP73-AS1 promoter is activated by TMZ, and by YY1 over expression. Using CRISPRi to deplete YY1, we found that YY1 promotes up regulation of TP73-AS1 and the activation of its promoter during TMZ treatment. In addition, we identified two putative YY1 binding sites within the TP73-AS1 promoter, and used mutagenesis to find that they are essential for TMZ mediated promoter activation. Together, our data positions YY1 as an important TP73-AS1 regulator, demonstrating that TP73-AS1 is expressed in the natural and pathological aging brain, including during neurodegeneration and cancer. Our findings advance our understanding of TP73-AS1 expression, bringing forth a new link between TMZ resistance and aging, both of which contribute to GBM morbidity.SARS-CoV-2 more readily affects the elderly, especially as they present co-morbidities. In the COVID-19 pathogeny, ACE2 appears to be the key cell receptor for SARS-CoV-2 to infect humans. The level of ACE2 gene expression influences the susceptibility of contracting SARS-CoV-2. In circumstances in which the ACE2 level is low, the incidence of Covid-19 seems to be fewer. Two clinical patterns illustrate this observation, i. e., in infants and in Alzheimer's disease (AD). Very young children and AD patients get little COVID-19, in part probably due to decreased expression of ACE2. The determination of the nasal level of ACE2 gene expression could provide a useful scale to predict the susceptibility to contract the SARS-CoV-2 infection.
Anemia is a common complication of chronic kidney disease (CKD). Treating renal anemia with erythropoiesis-stimulating agents (ESAs) or erythropoietin analogs is effective but has side effects. Therefore, we performed a meta-analysis to assess the efficacy and safety of roxadustat in treating CKD-induced anemia.
We searched publications online and conducted a meta-analysis and calculated relative risks with 95% confidence intervals (CIs) for dichotomous data and mean differences (MD) with 95% CIs for continuous data.
Of 110 articles, nine were included that contained 12 data sets and 11 randomized control trials on roxadustat. In the non-dialysis-dependent (NDD) high-dose/low-dose subgroups, the change in hemoglobin (Hb) levels was significantly higher in the roxadustat group than in the placebo group (
<0.0001,
=0.001, respectively). The Hb response rate of the roxadustat is higher in the NDD subgroup than in the placebo group (
<0.00001, MD=6.92, 95% CI 4.03, 11.89). However, in the dialysis-dependent subgroup, there was no significant difference in the change in Hb levels or the Hb response rate between the roxadustat and ESA groups.