Richardsdale2721

Z Iurium Wiki

Verze z 22. 9. 2024, 20:51, kterou vytvořil Richardsdale2721 (diskuse | příspěvky) (Založena nová stránka s textem „5 (more than 80%) showing the tumor-specific drug release. The cytotoxicity study showed the improved cytotoxicity of CDDP@PLs compared to cisplatin soluti…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

5 (more than 80%) showing the tumor-specific drug release. The cytotoxicity study showed the improved cytotoxicity of CDDP@PLs compared to cisplatin solution in MDA-MB-231 and SK-OV-3 cell lines, and fluorescence microscopy also showed enhanced cellular internalization. The acute toxicity study showed the safety and biocompatibility of the developed carrier system for the potential delivery of chemotherapeutic agents. These studies suggest that CDDP@PLs could be utilized as an efficient delivery system for the enhancement of therapeutic efficacy and to minimize the side effects of chemotherapy by releasing cisplatin at the tumor site.Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies and is the fourth leading cause of cancer-related deaths in the United States. Unfortunately, 80-85% of patients are diagnosed with unresectable, advanced stage tumors. These tumors are incurable and result in a median survival less than approximately six months and an overall 5-year survival rate of less than 7%. Whilst chemotherapy is a critical treatment, cure is not possible without surgical resection. The poor clinical outcomes in PDAC can be partially attributed to its dense desmoplastic stroma, taking up roughly 80% of the tumor mass. The stroma surrounding the tumor disrupts the normal architecture of pancreatic tissue leading to poor vascularization, high intratumoral pressure along with hypoxia and an acidic tumor microenvironment. This complicated microenvironment presents a significant challenge for drug delivery. The current manuscript discusses a novel approach to overcome many of these various obstacles. A complex of gemcitabine (GEM) and hemoglobin S (HbS) was formulated, which self-polymerizes under hypoxic and acidic conditions. When polymerized, HbS has the potential to break the tumor stroma, decrease intratumoral pressure, and therefore improve the treatment efficacy of standard therapy. Intratumoral injection of HbS with a fluorescent small molecule surrogate for GEM into a pancreatic tumor xenograft resulted in improved dissemination of the small molecule throughout the pancreatic tumor. The self-polymerization of HbS + GEM was significantly more effective than either agent individually at decreasing tumor size in an in vivo PDAC mouse model. These findings would suggest a clinical benefit from delivering the complex of GEM and HbS via direct injection by endoscopic ultrasound (EUS). https://www.selleckchem.com/products/leptomycinb.html With such a treatment option, patients with locally advanced disease would have the potential to become surgical candidates, offering them a chance for cure.Modern pharmaceutical technology still seeks new excipients and investigates the further use in already known ones. An example is magnesium aluminometasilicate Neusilin® US2 (NEU), a commonly used inert filler with unique properties that are usable in various pharmaceutical fields of interest. We aimed to explore its application in hypromellose matrix systems (HPMC content 10-30%) compared to the traditionally used microcrystalline cellulose (MCC) PH 102. The properties of powder mixtures and directly compressed tablets containing individual fillers NEU or MCC, or their blend with ratios of 1.51, 11, and 0.51 were investigated. Besides the routine pharmaceutical testing, we have enriched the matrices' evaluation with a biorelevant dynamic dissolution study and advanced statistical analysis. Under the USP apparatus 2 dissolution test, NEU, individually, did not provide advantages compared to MCC. The primary limitations were the burst effect increase followed by faster drug release at the 10-20% HPMC concentrations. However, the biorelevant dynamic dissolution study did not confirm these findings and showed similarities in dissolution profiles. It indicates the limitations of pharmacopoeial methods in matrix tablet development. Surprisingly, the NEU/MCC blend matrices at the same HPMC concentration showed technologically advantageous properties. Besides improved flowability, tablet hardness, and a positive impact on the in vitro drug dissolution profile toward zero-order kinetics, the USP 2 dissolution data of the samples N75M50 and N50M50 showed a similarity to those obtained from the dynamic biorelevant apparatus with multi-compartment structure. This finding demonstrates the more predictable in vivo behaviour of the developed matrix systems in human organisms.Bioactive glasses (BGs) are being increasingly considered for numerous biomedical applications. The loading of natural compounds onto BGs to increase the BG biological activity is receiving increasing attention. However, achieving efficient loading of phytotherapeutic compounds onto the surface of bioactive glass is challenging. The present work aimed to prepare novel amino-functionalized mesoporous bioactive glass nanoparticles (MBGNs) loaded with the phytotherapeutic agent Boswellia sacra extract. The prepared amino-functionalized MBGNs showed suitable loading capacity and releasing time. MBGNs (nominal composition 58 wt% SiO2, 37 wt% CaO, 5 wt% P2O5) were prepared by sol-gel-modified co-precipitation method and were successfully surface-modified by using 3-aminopropyltriethoxysilane (APTES). In order to evaluate MBGNs loaded with Boswellia sacra, morphological analysis, biological studies, physico-chemical and release studies were performed. The successful functionalization and loading of the natural compound were confirmed with FTIR, zeta-potential measurements and UV-Vis spectroscopy, respectively. Structural and morphological evaluation of MBGNs was done by XRD, SEM and BET analyses, whereas the chemical analysis of the plant extract was done using GC/MS technique. The functionalized MBGNs showed high loading capacity as compared to non-functionalized MBGNs. The release studies revealed that Boswellia sacra molecules were released via controlled diffusion and led to antibacterial effects against S. aureus (Gram-positive) bacteria. Results of cell culture studies using human osteoblastic-like cells (MG-63) indicated better cell viability of the Boswellia sacra-loaded MBGNs as compared to the unloaded MBGNs. Therefore, the strategy of combining the properties of MBGNs with the therapeutic effects of Boswellia sacra represents a novel, convenient step towards the development of phytotherapeutic-loaded antibacterial, inorganic materials to improve tissue healing and regeneration.This Special Issue entitled "Commemorative Issue in Honor of Professor María Vallet-Regí 20 Years of Silica-Based Mesoporous Materials" arises from the initiative of the editorial team of Pharmaceutics to pay homage to Professor Maria Vallet-Regí for her ground-breaking pioneering scientific contribution to the field of silica-based mesoporous materials for biomedical applications [...].Glioblastoma is an unmet clinical need. Local treatment strategies offer advantages, such as the possibility to bypass the blood-brain barrier, achieving high drug concentrations at the glioblastoma site, and consequently reducing systemic toxicity. In this study, we evaluated the feasibility of using hyaluronic acid (HA) for the local treatment of glioblastoma. HA was conjugated to doxorubicin (DOX) with distinct bio-responsive linkers (direct amide conjugation HA-NH-DOX), direct hydrazone conjugation (HA-Hz-DOX), and adipic hydrazone (HA-AdpHz-DOX). All HA-DOX conjugates displayed a small size (less than 30 nm), suitable for brain diffusion. HA-Hz-DOX showed the best performance in killing GBM cells in both 2D and 3D in vitro models and displayed superior activity in a subcutaneous GL261 tumor model in vivo compared to free DOX and other HA-DOX conjugates. Altogether, these results demonstrate the feasibility of HA as a polymeric platform for the local treatment of glioblastoma and the importance of rationally designing conjugates.Skin is the largest mechanical barrier against invading pathogens. Following skin injury, the healing process immediately starts to regenerate the damaged tissues and to avoid complications that usually include colonization by pathogenic bacteria, leading to fever and sepsis, which further impairs and complicates the healing process. So, there is an urgent need to develop a novel pharmaceutical material that promotes the healing of infected wounds. The present work aimed to prepare and evaluate the efficacy of novel azithromycin-loaded zinc oxide nanoparticles (AZM-ZnONPs) in the treatment of infected wounds. The Box-Behnken design and response surface methodology were used to evaluate loading efficiency and release characteristics of the prepared NPs. The minimum inhibitory concentration (MIC) of the formulations was determined against Staphylococcus aureus and Escherichia coli. Moreover, the anti-bacterial and wound-healing activities of the AZM-loaded ZnONPs impregnated into hydroxyl propyl methylcellulose (HPMC) gel were evaluated in an excisional wound model in rats. The prepared ZnONPs were loaded with AZM by adsorption. The prepared ZnONPs were fully characterized by XRD, EDAX, SEM, TEM, and FT-IR analysis. Particle size distribution for the prepared ZnO and AZM-ZnONPs were determined and found to be 34 and 39 nm, respectively. The mechanism by which AZM adsorbed on the surface of ZnONPs was the best fit by the Freundlich model with a maximum load capacity of 160.4 mg/g. Anti-microbial studies showed that AZM-ZnONPs were more effective than other controls. Using an experimental infection model in rats, AZM-ZnONPs impregnated into HPMC gel enhanced bacterial clearance and epidermal regeneration, and stimulated tissue formation. In conclusion, AZM -loaded ZnONPs are a promising platform for effective and rapid healing of infected wounds.Microvesicles, so-called endothelial large extracellular vesicles (LEVs), are of great interest as biological markers and cell-free biotherapies in cardiovascular and oncologic diseases. However, their therapeutic perspectives remain limited due to the lack of reliable data regarding their systemic biodistribution after intravenous administration.

Applied to a mouse model of peripheral ischemia, radiolabeled endothelial LEVs were tracked and their in vivo whole-body distribution was quantified by microSPECT/CT imaging. Hindlimb perfusion was followed by LASER Doppler and motility impairment function was evaluated up to day 28 post-ischemia.

Early and specific homing of LEVs to ischemic hind limbs was quantified on the day of ischemia and positively correlated with reperfusion intensity at a later stage on day 28 after ischemia, associated with an improved motility function.

This concept is a major asset for investigating the biodistribution of LEVs issued from other cell types, including cancer, thus partly contributing to better knowledge and understanding of their fate after injection.

This concept is a major asset for investigating the biodistribution of LEVs issued from other cell types, including cancer, thus partly contributing to better knowledge and understanding of their fate after injection.Enterotoxigenic Escherichia coli (ETEC) represents a major cause of morbidity and mortality in the human population. In particular, ETEC infections affect children under the age of five from low-middle income countries. However, there is no licensed vaccine against this pathogen. ETEC vaccine development is challenging since this pathotype expresses a wide variety of antigenically diverse virulence factors whose genes can be modified due to ETEC genetic plasticity. To overcome this challenge, we propose the use of outer membrane vesicles (OMVs) isolated from two ETEC clinical strains. In these OMVs, proteomic studies revealed the presence of important immunogens, such as heat-labile toxin, colonization factors, adhesins and mucinases. Furthermore, these vesicles proved to be immunogenic after subcutaneous administration in BALB/c mice. Since ETEC is an enteropathogen, it is necessary to induce both systemic and mucosal immunity. For this purpose, the vesicles, free or encapsulated in zein nanoparticles coated with a Gantrez®-mannosamine conjugate, were administered orally.

Autoři článku: Richardsdale2721 (Wood Mathiasen)