Rankinpark1518
Furthermore, BAP18 depletion delayed G1-S phase transition and inhibited cell growth in OSCC-derived cell lines. INTERPRETATION This study suggests that BAP18 is involved in modulation of CCND1/2 transcription and promotes OSCC progression. BAP18 could be a potential target for OSCC treatment and diagnosis. FUND This work was funded by National Natural Science Foundation of China (31871286, 81872015, 31701102, 81702800, 81902889), Foundation for Special Professor of Liaoning Province, and Supported project for young technological innovation-talents in Shenyang (No. RC170541). BACKGROUND Dysregulation of polycomb chromobox (CBX) proteins that mediate epigenetic gene silencing contributes to the progression of human cancers. Yet their roles in clear cell renal cell carcinoma (ccRCC) remain to be explored. METHODS The expression of CBX4 and its clinical significance were determined by qRT-PCR, western blot, immunohistochemistry and statistical analyses. The biological function of CBX4 in ccRCC tumor growth and metastasis and the underlying mechanism were investigated using in vitro and in vivo models. FINDINGS CBX4 exerts oncogenic activities in ccRCC via interaction with HDAC1 to transcriptionally suppress tumor suppressor KLF6. CBX4 expression is increased in ccRCC and correlated with poor prognosis in two independent cohorts containing 840 patients. High CBX4 expression is significantly associated with Fuhrman grade and tumor lymph node invasion. CBX4 overexpression promotes tumor growth and metastasis, whereas CBX4 knockdown results in the opposite phenotypes. Mechanistically, CBX4 downregulates KLF6 via repressing the transcriptional activity of its promoter. Further studies show that CBX4 physically binds to HDAC1 to maintain its localization on the KLF6 promoter. Ectopic expression of KLF6 or disruption of CBX4-HDAC1 interaction attenuates CBX4-mediated cell growth and migration. Furthermore, CBX4 depletion markedly enhances the histone deacetylase inhibitor (HDACi)-induced cell apoptosis and suppression of tumor growth. INTERPRETATION Our data suggest CBX4 as an oncogene with prognostic potential in ccRCC. The newly identified CBX4/HDAC1/KLF6 axis may represent a potential therapeutic target for the clinical intervention of ccRCC. BACKGROUND The 5-year survival rate of patients with pancreatic ductal adenocarcinoma (PDAC) is around 5% due to the fact that the majority of patients present with advanced disease that is treatment resistant. Familial pancreatic cancer (FPC) is a rare disorder that is defined as a family with at least two affected first degree relatives, with an estimated incidence of 4%-10%. The genetic basis is unknown in the majority of families although around 10%-13% of families carry germline mutations in known genes associated with hereditary cancer and pancreatitis syndromes. METHODS Panel sequencing was performed of 35 genes associated with hereditary cancer in 43 PDAC cases from families with an apparent hereditary pancreatic cancer syndrome. Sodiumbutyrate FINDINGS Pathogenic variants were identified in 19% (5/26) of PDAC cases from pure FPC families in the genes MLH1, CDKN2A, POLQ and FANCM. Low frequency potentially pathogenic VUS were also identified in 35% (9/26) of PDAC cases from FPC families in the genes FANCC, MLH1, PMS2, CFTR, APC and MUTYH. Furthermore, an important proportion of PDAC cases harboured more than one pathogenic, likely pathogenic or potentially pathogenic VUS, highlighting the multigene phenotype of FPC. INTERPRETATION The genetic basis of familial or hereditary pancreatic cancer can be explained in 21% of families by previously described hereditary cancer genes. Low frequency variants in other DNA repair genes are also present in 35% of families which may contribute to the risk of pancreatic cancer development. FUNDING This study was funded by the Instituto de Salud Carlos III (Plan Estatal de I + D + i 2013-2016) ISCIII (PI09/02221, PI12/01635, PI15/02101 and PI18/1034) and co-financed by the European Development Regional Fund A way to achieve Europe (ERDF), the Biomedical Research Network in Cancer CIBERONC (CB16/12/00446), Red Temática de investigación cooperativa en cáncer RTICC (RD12/0036/0073) and La Asociación Española contra el Cáncer AECC (Grupos Coordinados Estables 2016). BACKGROUND Autoantibodies against tumor associated antigens are highly related to cancer progression. Autoantibodies could serve as indicators of tumor burden, and have the potential to monitor the response of treatment and tumor recurrence. However, how the autoantibody repertoire changes in response to cancer treatment are largely unknown. METHODS Sera of five lung adenocarcinoma patients before and after surgery, were collected longitudinally. These sera were analyzed on a human proteome microarray of 20,240 recombinant proteins to acquire dynamic autoantibody repertoire in response to surgery, as well as to identify the antigens with decreased antibody response after tumor excision or surgery, named as surgery-associated antigens. The identified candidate antigens were then used to construct focused microarray and validated by longitudinal sera collected from a variety of time points of the same patient and a larger cohort of 45 sera from lung adenocarcinoma patients. FINDINGS The autoantibody profiles arrence of tumor in a personalized manner. FUNDING Research supported by grants from National Key Research and Development Program of China Grant (No. 2016YFA0500600), National Natural Science Foundation of China (No. 31970130, 31600672, 31670831, and 31370813), Open Foundation of Key Laboratory of Systems Biomedicine (No. KLSB2017QN-01), Science and Technology Commission of Shanghai Municipality Medical Guidance Science &Technology Support Project (16411966100), Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (20172005), Shanghai Municipal Commission of Health and Family Planning Outstanding Academic Leaders Training Program (2017BR055) and National Natural Science Foundation of China (81871882). Mycobacterium tuberculosis (M.tb) is likely the most successful human pathogen, capable of evading protective host immune responses and driving metabolic changes to support its own survival and growth. Ineffective innate and adaptive immune responses inhibit effective clearance of the bacteria from the human host, resulting in the progression to active TB disease. Many regulatory mechanisms exist to prevent immunopathology, however, chronic infections result in the overproduction of regulatory myeloid cells, like myeloid-derived suppressor cells (MDSC), which actively suppress protective host T lymphocyte responses among other immunosuppressive mechanisms. The mechanisms of M.tb internalization by MDSC and the involvement of host-derived lipid acquisition, have not been fully elucidated. Targeted research aimed at investigating MDSC impact on phagocytic control of M.tb, would be advantageous to our collective anti-TB arsenal. In this review we propose a mechanism by which M.tb may be internalized by MDSC and survive via the manipulation of host-derived lipid sources.