Smidtbarker0952

Z Iurium Wiki

Verze z 22. 9. 2024, 19:09, kterou vytvořil Smidtbarker0952 (diskuse | příspěvky) (Založena nová stránka s textem „The nuclear receptor subfamily 2 group F member 2 (NR2F2) gene encodes a ligand-inducible transcription factor involved in angiogenesis and heart developme…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The nuclear receptor subfamily 2 group F member 2 (NR2F2) gene encodes a ligand-inducible transcription factor involved in angiogenesis and heart development. This study aimed to elucidate the molecular mechanism of epigenetic regulation of NR2F2 in tetralogy of Fallot (TOF) development. In the present study, immunohistochemical staining showed that NR2F2 protein expression was significantly higher in the right ventricular outflow tract (RVOT) tissues of TOF cases compared with controls. The methylation status of the CpG island shore (CGIS) of the NR2F2 gene was decreased in TOF cases, and the CpG site 3 in the CGIS region of NR2F2 promoter was a differential methylation site. Furthermore, the methylation level of the CpG site 3 and the NR2F2 protein expression were significantly negatively correlated in TOF patients. In vitro functional analysis revealed that RXRα could upregulate the NR2F2 gene by directly binding to the CGIS in the NR2F2 promoter, while hypomethylation of the NR2F2 promoter via treatment with 5-azacytidine influenced the affinity of RXRα to its binding sites, as shown by ChIP-qPCR. These findings suggest that promoter hypomethylation activates NR2F2 by enhancing RXRα binding to NR2F2 CGIS in the development of TOF.Advanced oxidative protein products (AOPPs) are novel uremic toxins whose concentrations continuously increases in patients with chronic kidney disease (CKD). Epithelial-to-mesenchymal transition (EMT) of tubular cells is the main mechanism underlying CKD pathogenesis. Studies have shown that AOPPs can induce EMT and promote renal fibrosis. However, the mechanism through which AOPPs induce tubular cell-EMT is poorly understood. In this study, we aimed to clarify the mechanisms underlying AOPP-induced EMT in human kidney proximal tubular (HKC-8) epithelial cells. Small molecule inhibitor, CRISPR-Cas9 knockout technology, siRNA knockdown technology, western blot, and reverse transcription-quantitative polymerase chain reaction were applied to investigate the mechanisms underlying AOPP-induced EMT in HKC-8 cells. AOPP treatment was found to significantly induce EMT, as evidenced by increased α-smooth muscle actin (α-SMA) and decreased E-cadherin levels, and upregulated Wnt1, β-catenin, Tcf4, and Gsk-3β expression. Conversely, blockade of Wnt/β-catenin signaling using small molecule inhibitor ICG-001 hindered AOPP-induced EMT. Moreover, knockout of receptor of advanced glycation end-products (RAGE) reversed these aforementioned effects, whereas AGE receptor 1 (AGER1)-specific siRNA transfection enhanced them. Taken together, these data suggested that AOPPs could induce HKC-8 cell EMT by activating the RAGE/Wnt/β-catenin signaling pathway and AGER1 could restore EMT by antagonizing the role of RAGE. These results may provide a new theoretical basis for EMT and help identify new therapeutic targets for suppressing CKD progression.Anaplastic thyroid carcinoma (ATC) is one of the most aggressive cancer types; however, the molecular mechanism contributing to the aggressive characteristics remain unclear. Membrane type 1 matrix metalloproteinase (MT1-MMP) plays an important role in cancer invasion and has been associated with a poor prognosis in various malignant neoplasms. Heptadecanoic acid supplier In this study, we investigated the relationship between MT1-MMP expression and the proliferation and invasion of ATC cells, along with the association with clinicopathologic factors in patients with ATC. Suppression of MT1-MMP reduced the proliferation and invasion of ATC cells, and suppressed ERK activity, indicating a role in cancer cell proliferation in collagen matrix culture conditions. The expression of MT1-MMP was detected in 29 of 34 (85.3%) surgical specimens from ATC patients. In addition, the expression of MT1-MMP in the tumor lesion was higher than that of normal and stromal tissues. Collectively, these results suggest that elevated MT1-MMP expression plays a role in the pathogenesis of ATC, which may promote its aggressive characteristics such as proliferation and invasion, highlighting a potential new therapeutic target.Autosomal dominant polycystic kidney disease (ADPKD) is a hereditary disorder which manifests progressive renal cyst formation and leads to end-stage kidney disease. Around 85% of cases are caused by PKD1 heterozygous mutations, exhibiting relatively poorer renal outcomes than those with mutations in other causative gene PKD2. Although many disease models have been proposed for ADPKD, the pre-symptomatic pathology of the human disease remains unknown. To unveil the mechanisms of early cytogenesis, robust and genetically relevant human models are needed. Here, we report a novel ADPKD model using kidney organoids derived from disease-specific human induced pluripotent stem cells (hiPSCs). Importantly, we found that kidney organoids differentiated from gene-edited heterozygous PKD1-mutant as well as ADPKD patient-derived hiPSCs can reproduce renal cysts. Further, we demonstrated the possibility of ADPKD kidney organoids serving as drug screening platforms. This newly developed model will contribute to identifying novel therapeutic targets, extending the field of ADPKD research.Volumetric muscle loss and muscle degeneration are conditions for which there are currently no effective treatment options. Human adipose stem cells (hASCs) offer promise in cell-based regenerative therapies to treat muscle damage due to their ability to self-renew and differentiate. However, in the absence of universal culture conditions that yield greater than 15% myogenic differentiation, the clinical potential of these cells is limited. Here we report on the evaluation of two different media recipes, three extracellular matrix (ECM) proteins, and a poly (ethylene glycol) (PEGDMA) hydrogel with a physiologically relevant elasticity to determine how the extracellular chemical and physical environment work together to enhance myogenic differentiation of hASCs. Our results identify a combination of unique biochemical and physical factors that promote myogenesis, laying the groundwork for creating a scaffold and culture medium that will effectively and efficiently direct myogenic differentiation of adult stem cells for clinical applications in the future.

Among the members of the DOCK family, DOCK1-5 function as guanine-nucleotide exchange factors for small GTPase Rac1, which regulates the actin cytoskeleton. It has been reported that in model organisms the Dock-Rac axis is required for myoblast fusion. We examined the role of DOCK1-5 in trophoblast fusion herein.

We used a quantitative polymerase chain reaction (qPCR) to examine the mRNA expressions of DOCK1-5 and differentiation-related genes, i.e., fusogenic genes, in human trophoblastic cell lines, BeWo and JEG-3. We treated BeWo cells with TBOPP and C21 to inhibit DOCK1 and DOCK5. Cell dynamics and cell fusion were assessed by live imaging and immunostaining. The signaling pathways induced by DOCK1/5 inhibition were examined by western blotting.

DOCK1 and DOCK5 were expressed in BeWo cells. The inhibition of DOCK1 or DOCK5 did not prevent the cell fusion induced by forskolin (a common reagent for cell fusion); it induced cell fusion. DOCK1 inhibition induced cell death, as did forskolin. DOCK1 and DOCK5 inhibition for 24 and 48h increased the expression of the genes ASCT2 and SYNCYTIN2, which code responsive proteins of trophoblast cell fusion, respectively.

DOCK1 and DOCK5 inhibition participates in BeWo cell fusion, probably via pathways independent from forskolin-mediated pathways.

DOCK1 and DOCK5 inhibition participates in BeWo cell fusion, probably via pathways independent from forskolin-mediated pathways.Renal stem or progenitor cells (RSCs), labeled with CD24 and CD133, play an important role during the repair of renal injury. Bmi-1 is a critical factor in regulating stemness of adult stem cells or progenitor cells. To investigate whether Bmi-1 determines the stemness of RSCs by inhibiting p16 and p53, and/or maintaining redox balance, RSCs were isolated, cultured and analyzed for stemness characterizations. In RSCs from Bmi-1-deficient (Bmi-1-/-) mice and wild type (WT) littermates, self-renewal, stemness, and expressions of molecules for regulating redox balance and cell cycle progression were compared. Self-renewal of RSCs from Bmi-1 and p16 double-knockout (Bmi-1-/-p16-/-), Bmi-1 and p53 double-knockout (Bmi-1-/-p53-/-) and N-acetylcysteine (NAC)-treated Bmi-1-/- mice were further analyzed for amelioration. Human renal proximal tubular epithelial cells (HK2) were also used for signaling analysis. Our results showed that third-passage RSCs from WT mice had good stemness; Bmi-1 deficiency led to the decreased stemness, and the increased apoptosis for RSCs; NAC treatment or p16/p53 deletion ameliorated the decreased self-renewal of RSCs in Bmi-1 deficiency mice by maintaining redox balance or inhibiting cell cycle arrest respectively; Oxidative stress (OS) could negatively feedback regulate the mRNA expressions of Bmi-1, p16 and p53. In conclusion, Bmi-1 determined the stemness of RSCs through maintaining redox balance and preventing cell cycle arrest. Thus, Bmi-1 signaling molecules would be novel therapeutic targets for maintaining RSCs and hampering the progression of kidney diseases to prevent renal failure.Dental pulp, plays an indispensable role in maintaining homeostasis of the tooth. Pulp necrosis always causes tooth nutrition deficiency and abnormal root development, which leads to tooth discoloration, fracture or even loss. Our previous study showed implantation of autologous SHED could regenerate functional dental pulp. However, the detailed mechanism of the implanted SHED participating in dental pulp regeneration remains unknown. In this study, we implanted SHED in a porcine dental pulp regeneration model to evaluate the regenerative effect and identify whether SHED promoted angiogenesis in regenerated dental pulp. Firstly we verified that xenogenous SHED had the ability to regenerated pulp tissue of host in vivo. Then we found the vasculature in regenerated pulp originated from implanted SHED. In addition, stem cells were isolated from regenerated dental pulp, which exhibited good multi-differentiation properties and promoted angiogenesis in pulp regeneration process and these results demonstrated that SHED promoted angiogenesis in stem cell-mediated dental pulp regeneration.The long-living naked mole-rat (NMR) shows negligible senescence and resistance to age-associated diseases. Recent evidence, based on protein-level assays, suggests that enhanced protein homeostasis machinery contributes to NMR stress-resistance and longevity. Here, we develop NMR-specific, transcriptional assays for measuring the unfolded protein response (UPR), a component of ER proteostasis. By varying doses and response times of pharmacological ER stressors applied to NMR kidney fibroblasts, we probe the NMR UPR in detail, demonstrating that NMR fibroblasts have a higher UPR activation threshold compared to mouse fibroblasts under mild ER-stress induction; whereas temporal analysis reveals that severe ER-stress induction results in no comparative differences. Probing NMR UPR activation with our robust assays may lead to insights into the proteostasis and ageing relationship.

Autoři článku: Smidtbarker0952 (Sylvest Velasquez)