Hendrixsvendsen4968

Z Iurium Wiki

Verze z 22. 9. 2024, 18:48, kterou vytvořil Hendrixsvendsen4968 (diskuse | příspěvky) (Založena nová stránka s textem „We used structural equation modelling (SEM) to detangle the direct and indirect effects of ash application on organisms in the decomposer food web and on n…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

We used structural equation modelling (SEM) to detangle the direct and indirect effects of ash application on organisms in the decomposer food web and on nitrogen availability. We found that ash increased the abundance of bacteria and protozoa, as well as the inorganic nitrogen pool at 0-3 cm depth, whereas the effect of ash was negligible at 3-6 cm depth. Earthworm abundance increased, whereas enchytraeid abundance decreased 2 years after ash application. The structural equation modelling showed that ash application stimulated the bacterial feeding pathway and increased nitrogen mineralization. Contrary, ash had a negative effect on fungal biomass at the first sampling, however, this effect subdued over time. Our results suggest that as the soil decomposer food web is resilient to ash application, this is a viable option for sustainable management of biofuel plantations. Urban greenery is essential to the living environment of humans. Objectively assessing the rationality of the spatial distribution of green space resources will contribute to regional greening plans, thereby reducing social injustice. However, it is difficult to propose a reasonable greening policy aimed at the coordinated development of an urban agglomeration due to a lack of baseline information. This study investigated the changes in spatial fairness of the greenery surrounding residents in Guangdong-Hong Kong-Macao Greater Bay by examining time-series remote sensing images from 1997 to 2017. With the substitution of impervious, artificial surfaces for universal areas of human activities, we quantified the amount of surrounding greenery from the perspective of human activities at the pixel level by utilizing a nested buffer. The Gini coefficient was further calculated for each city to quantify the spatial fairness of the surrounding greenery to people. The results indicated that areas with less greenery surrounding them decreased during 1997 and 2017 in Guangdong-Hong Kong-Macao Greater Bay. The spatial fairness did not tend to increase with the improvements in the overall greening level. The spatial fairness of 4 cities had an increasing trend, and the Gini coefficients of 5 cities were still over 0.6 in 2017. We further proposed different greening policy suggestions for different cities based on the amount of greenery surrounding people and the trend in fairness. The results and the conclusion of this research will help to improve future regional greening policies and to reduce environmental injustice. Although graphene exhibited excellent performance, its capability of electrochemical catalytic oxidation would significantly improve by modification via sulfur (S)-doping. However, due to the complicated doping species of heteroatoms, the detailed mechanism was still remained open for discussion. Thus, this first-attempt study tended to decipher such mechanism behind the direct and indirect oxidation by analyzing S species in S-graphene. The density functional theory (DFT) was adopted for reactive center calculation and confirmation of secondary active species, to discuss the degradation pathway. As the experimental and calculation results, the thiophene structure S was more favorable for electron acceptation in direct oxidation. Chloride reactive species, as the most effective secondary functionalities (rather than •OH), were favorably generated on the edge doped S position than thiophene structured S in defects, to further trigger the indirect oxidation. However, the extensive contents of reactive functionalities could act as trap for self-annihilation of chloride reactive species, resulting in poor electrocatalytic degradation of the pollutants. This study deepened the understanding of heteroatoms doping for electrochemical catalytic oxidation. The presence of persistent free radicals (PFR) in biochars may greatly broaden the application of biochars in pollution control, but may also cause negative impacts to the environment. Understanding the structural basis and the formation mechanisms of PFR is essential for a targeted biochar production and application. This study used rice straw (RS), a ubiquitous agricultural waste, to investigate the generation processes of PFR in relation to RS pyrolysis kinetics. Based on a detailed thermogravimetric (TG) and derivative thermogravimetric (DTG) analysis, the activation energy was calculated by Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) methods. This work combined pyrolysis kinetics analysis and solid particle characterization. Our results showed that lignin started to pyrolyze at a lower temperature than cellulose and hemicellulose. Lignin was the main factor for PFR generation. Chemical bond breaking contributed only slightly to PFR formation. The reconfiguration of the carbonaceous structures may be a more important contributor to PFR formation, while the cross-linking between different compositions and the interactions between the chemical compositions and inorganic minerals may play a significant role for PFR generation and stabilization in RS. This study provides useful theoretical basis to understand the thermal pyrolysis process of RS and the manipulation of biochar properties. Cyanobacterial extracellular polymeric substances (EPSs) in aquatic environments are easily adsorbed onto colloidal particles, whereas the adsorption behavior as affected by molecular weight (MW) properties remained unknown till now. Herein, the bulk cyanobacterial EPS matrix ( LMW-EPS, demonstrating obvious MW-dependent adsorption heterogeneities. During adsorption, the values of SUVA254 in residual supernatants exhibited an initial decrease followed by gradual increase for all samples, suggesting that the preferentially adsorbed aromatic substances can be subsequently replaced by the non-aromatic moieties. 2D-FTIR-COS further revealed that the carboxylic groups of proteins were preferentially adsorbed onto colloidal surface, followed by the CC functional groups and then the CH groups of polysaccharides, which accounted for the variations of SUVA254 values in the supernatants. This study demonstrated that the adsorption behavior of EPS matrix was highly MW-dependent, and detailed characterization on size fractionation is thus needed in future studies. Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) observations were performed from 27 December 2018 to 16 January 2019 in Changshou, one of subdistricts of Chongqing, China. Primary atmospheric pollutant in Changshou during wintertime was PM2.5, whose contribution averaged about 70.15% ± 9.5% of PM10. The ratio of PM2.5/PM10 decreased when PM2.5 pollution became worse, and it should attribute to biomass burning and the contribution of hygroscopic growth and enhanced heterogeneous chemistry under high relative humidity condition. Moreover, nitrogen dioxide (NO2), formaldehyde (HCHO) and glyoxal (CHOCHO) vertical profiles during the campaign period were retrieved separately. TROPOMI HCHO vertical column densities (VCDs) and MAX-DOAS HCHO VCDs were correlated well (R = 0.93). In order to identify the sources of volatile organic compound (VOC) in Changshou, the ratio of CHOCHO to HCHO (RGF) in five different layers were estimated. The estimated daily averaged RGF were 0.0205 ± 0.0077, 0.0727 ± 0.0286, 0.0864 ± 0.0296, 0.0770 ± 0.0275 and 0.0746 ± 0.0263 in 0-100 m, 100-200 m, 300-400 m, 500-600 m and 700-800 m layers, respectively. The estimated RGF will increase when biomass burnings were dominated. Using NO2 as a tracer of anthropogenic emissions, we found the RGF values gradually decrease with the increase of NO2 levels. RGF values in 0-100 m layer and all the other upper layers are 0.015-0.025 and 0.06-0.14, and that means the dominant sources of VOCs in 0-100 m layer and all the other upper layers are biogenic emission and anthropogenic emission (especially biomass burning), respectively. In addition, we found that RGF has site dependence which is in compliance with several previous studies. BACKGROUND Given the role that T lymphocytes play on the pathogenesis of allergic asthma, drugs targeting Th2 and Th17 cells may be a hopeful therapeutic strategy. This study aimed to evaluate the effect of rosuvastatin treatment on cytokine production and lung inflammation in allergic asthma. METHODS The animals were assigned into control (C), asthmatic (A), hyperlipidemic (H), asthmatic-hyperlipidemic (AH), rosuvastatin (40 mg/kg/day intraperitoneally, for 3 weeks)-treated asthmatic (AR), rosuvastatin-treated hyperlipidemic (HR) and rosuvastatin-treated asthmatic-hyperlipidemic (AHR) groups (n = 6 in each group). The levels of IL-4, IFN-γ and IL-17, total and differential WBC counts in bronchoalveolar lavage fluid (BALF), Th1/Th2 balance, and pathological changes were evaluated. learn more RESULTS The BALF level of IL-4 in A, H and AH groups, and IL-17A in A and AH groups were significantly higher than that in C group (p  less then  0.05 to p  less then  0.001). IFN-γ level and Th1/Th2 balance (IFN‑γ/IL-4 ratio) in A and AH groups were significantly decreased (p  less then  0.05 to p  less then  0.01). Inflammatory cells infiltration, muscle hypertrophy and emphysema were also observed in A and AH groups. The BALF levels of IL-4 in AR, HR and AHR groups, IFN-γ level in HR group, and IL-17A level in AR and AHR groups showed a significant improvement compared to that of A, H and AH groups (p  less then  0.05 to p  less then  0.001). Rosuvastatin treatment increased Th1/Th2 balance in all treated groups (p  less then  0.05 to p  less then  0.01), decreased total WBC counts, neutrophilia, eosinophilia and lung inflammation in AR and AHR groups, and improved muscle hypertrophy and emphysema in AHR group. CONCLUSIONS Rosuvastatin treatment improved lung pathological changes by suppression of Th2 and Th17-mediated cytokines which was unrelated to its lipid-lowering activity. Therefore, rosuvastatin might be a candidate immunomodulatory drug for treatment of patients with allergic asthma. INTRODUCTION Retained surgical sponges and instruments is a well-recognized medical error that may occur after all kinds of surgeries. This event has a catastrophic impact on the patient, health care workers, and the health institution. Sometimes, it is termed as textiloma or gossypiboma. CASE PRESENTATION A 40-year-old lady presented with abdominal pain, diarrhea and bilious vomiting for 3 days. The patients had history of cesarean section which was performed before 4 months. During examination she was pale and she had tenderness in the lower abdomen. CT-scan of the abdomen showed thickening of the wall of the sigmoid colon with evidence of intramural air and dilated small bowel loops. Colonoscopy showed evidence of surgical sponge causing transmural erosion and ulceration of the sigmoid colon. During surgery there was an evidence of a retained surgical sponge resulting in fistula between the ileum and the sigmoid colon. Resection of the involved part of the ileum and the sigmoid colon was done with end-end anastomosis. After 10 days she developed complete abdominal dehiscence. An emergency operation was performed for the patient and the abdomen was closed with tension sutures. CONCLUSION The surgical team is responsible for preventing this event by careful inspection of the surgical site using all the available methods and technology. Technology increases the safety but doesn't accurately prevent the accidents. All causative human and technical factors must be addressed carefully.

Autoři článku: Hendrixsvendsen4968 (Hjort Pennington)