Uptonramirez1485

Z Iurium Wiki

Verze z 22. 9. 2024, 18:44, kterou vytvořil Uptonramirez1485 (diskuse | příspěvky) (Založena nová stránka s textem „Species sharing resources are predicted to compete, but co-occurring species can avoid competition through niche partitioning. Here, we investigated the in…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Species sharing resources are predicted to compete, but co-occurring species can avoid competition through niche partitioning. Here, we investigated the inter- and intra-specific differences using stable isotope analyses in the black-bellied storm-petrel (Fregetta tropica) and the Wilson's storm-petrel (Oceanites oceanicus), breeding sympatrically in maritime Antarctica. We analysed stable carbon, nitrogen and oxygen isotopes in samples representing different life stages; chick down (pre-laying females), chick feather (chick), and adult blood (chick-rearing adults). Pre-laying females had wider stable isotope niches than chicks or chick-rearing adults, due to pre-laying females being free roaming while chick-rearing adults were central-place-foragers. Chicks were fed at a higher trophic level than the adults (higher δ15N), likely to compensate for the high nutritional demands of the growing chicks. Wilson's storm-petrels showed substantial overlap in stable isotope niches between all life stages, while the blfferent chick provisioning strategies, and shows that the high productivity of the Antarctic marine ecosystem may facilitate foraging niche overlap of sympatrically living species. V.Although the majority of river networks across the world are intermittent or ephemeral, afforestation management of these catchments is mostly founded on studies in perennial catchments. The hydrological model CATHY (CATchment HYdrology) was used here to simulate the effects that different degrees of progressive conversion from pasture to plantation have on the streamflow generation in intermittent streams. The model was applied to two rural catchments with different size and topographic features in southwest Victoria, Australia. Simulated scenarios included different levels of plantation establishment in pasture areas planting gradually from downslope to upslope and vice versa. Different models for root water uptake were compared to account for water stress, oxygen stress, and root water compensation. A function of root growth over time was also explored to see how it affected model results. The model results show that complex interactions between topographic features and afforestation patterns are crucial in controlling catchments hydrological behavior. In particular, results show that planting in the prone-saturation areas has the largest effects on streamflow. Oxygen stress has a more significant impact than root water compensation on streamflow changes. A time dependent root growth results in smaller streamflow reduction on average, although with different impacts on the two catchments, also due to the interplay between topography and plantation patterns. Overall, our results show that there are multiple factors affecting the water balance when a catchment is partially or completely afforested and those must be taken into account when implementing forestry management strategies. This paper explores the extent to which enzymatic and bacterial biodelignification systems can breakdown lignocellulose in model wastes to potentially enhance biogas generation. Two representative lignocellulosic wastes (newspaper and softwood) commonly found largely undegraded in old landfills were used. A fungal peroxidase (lignin peroxidase) enzyme and a recently isolated lignin-degrading bacterial strain (Agrobacterium sp.) were used. Tests were conducted in stirred bioreactors with methanogens from sewage sludge added to produce biogas from breakdown products. Addition of lignin peroxidase resulted in ~20% enhancement in cumulative methane produced in newspaper reactors. It had a negative effect on wood. Agrobacterium sp. strain enhanced biodegradation of both wood (~20% higher release of soluble organic carbon and enhanced breakdown) and newspaper (~2-fold biogas yield). The findings of this paper have important implications for enhanced breakdown in old landfills that are rich in these wastes, and anaerobic operations utilising lignocellulosic wastes for higher degradation efficiencies and biogas production. Gray water constitutes an important fraction of total wastewater. Some of the most problematic compounds in gray water are the anionic surfactants used as an ingredient for domestic and industrial soaps and detergents. The alkylbenzene sulfonates used in commercially available formula are highly complex mixtures of linear (LAS) and branched (BAS) molecules. LAS are classified generally as biodegradable, although their widespread use generates accumulation in the environment. Docking tools, widely used in recent years in the bioremediation field, allow molecular modeling of the ligand-enzyme interaction, which is key to understanding and evaluating the possibility of biodegradation. In this work, molecular details that allow us to establish a biodegradation pattern for some alkylbenzene sulfonates were elucidated. Two hydrogen bonds, key for the anchorage of surfactants to the monooxygenase active site involved in the initial biodegradation, were found. These bonds determine the way surfactants locate in the hydrophobic pocket of the enzyme affecting the biodegradation rate in a structurally dependent manner. For C10 to C12 linear isomers, the degradation rate increased together with the length of the hydrocarbon chain. For C13 and C14 isomers, steric difficulties to accommodate the surfactant molecule in the catalytic site were observed. For branched chain isomers, little or no biodegradation was found. In addition, biodegradation was lower in mixtures than for the pure isomers. These results will allow an intelligent design of this family of anionic surfactants to attenuate their contaminating effects in waters and soils. This study constitutes, to the best of our knowledge, a novel contribution towards the design of environmentally friendly surfactants with higher probabilities of being biodegraded to complete mineralization. The paper presents the application of a low-cost system for monitoring the current level of road traffic participants' exposure to PM10 air pollution. The research was carried out from the end of August 2017 to the beginning of October 2017 on the central section of one of the main roads in Bielsko-Biała, Poland. In the analysed period, significant changes in the daily distribution of road traffic both into and out of the city centre were observed. The average travel time depended on the direction of traffic, and the difference between directions being almost 50%. The PM10 urban background concentration was also subject to daily changes, and in the fifth week of observation, it reached a value more than twice as high as in the first week of observation. The maximum level of road traffic participants' exposure was observed at a relatively low urban background PM10 concentration. It was observed that a significant slowdown in traffic in conditions of acceptable urban air quality led to a comparable level of exposure to that of standard traffic conditions and poor urban air quality. It was also found that the slowdown in traffic increased the exposure time of traffic participants travelling towards the city centre by an average of 24% and, for those travelling in the opposite direction, by as much as 50%. In an extreme case of traffic delay, exposure to PM10 concentration in the vicinity of the road was two and a half times as long. In Mediterranean areas where drought-induced forest dieback and tree mortality have been widely reported, it is still under debate how the likely risks of climate change will affect tree growth and consequently forest productivity. Increasing tree mortality has been associated not only to increased drought, but also to a lack of management in many dense pine forests and plantations, where warming may intensify tree-to-tree competition for soil water. This emphasizes the need of using silviculture to adapt dense stands of Mediterranean pine reforestations to warmer and drier conditions. Here we combined dendrochronology and C and O isotope analyses of wood in two Aleppo pine (Pinus halepensis) plantations, growing under semiarid conditions and experimentally thinned at high and moderate intensities along with control. The main aim was to understand the responses of radial growth and water use efficiency (WUEi) to different thinning intensities, and to analyze the effectiveness of thinning to enhance post-drought growth resilience. Thinning had a positive effect on growth, produced an increase of δ18O, reduced growth sensitivity to drought and decreased WUEi, suggesting a reduction of drought stress. These results were consistent across sites, and were significant even 20 years after the intervention took place. Considering the climate effects on growth through the SPEI drought index to calculate resistance and recovery indices, an increase of resistance after thinning was observed. We conclude that high thinning intensity (50% of basal area removed) is a useful silviculture intervention on Mediterranean Aleppo pine plantations that enhances their growth, and makes them less dependent on harsh climatic conditions, improving their resilience against drought and consequently making them better adapted to more unfavourable conditions. V.Infection by coronavirus (CoV-19) has led to emergence of a pandemic called as Coronavirus Disease (COVID-19) that has so far affected about 210 countries. The dynamic data indicate that the pandemic by CoV-19 so far has infected 2,403,963 individuals, and among these 624,698 have recovered while, it has been fatal for 165,229. Without much experience, currently, the medicines that are clinically being evaluated for COVID-19 include chloroquine, hydroxychloroquine, azithromycin, tocilizumab, lopinavir, ritonavir, tocilizumab and corticosteroids. Therefore, countries such as Italy, USA, Spain and France with the most advanced health care system are partially successful to control CoV-19 infection. India being the 2nd largest populous country, where, the healthcare system is underdeveloped, major portion of population follow unhygienic lifestyle, is able to restrict the rate of both infection and death of its citizens from COVID-19. India has followed an early and a very strict social distancing by lockdown and has issued advisory to clean hands regularly by soap and/or by alcohol based sterilizers. Rolling data on the global index of the CoV infection is 13,306, and the index of some countries such as USA (66,148), Italy (175,055), Spain (210,126), France (83,363) and Switzerland (262,122) is high. The index of India has remained very low (161) so far, mainly due to early implementation of social lockdown, social distancing, and sanitizing hands. However, articles on social lockdown as a preventive measure against COVID-19 in PubMed are scanty. It has been observed that social lockdown has also drastic impacts on the environment especially on reduction of NO2 and CO2 emission. read more Slow infection rate under strict social distancing will offer time to researchers to come up with exact medicines/vaccines against CoV-19. Therefore, it is concluded that stringent social distancing via lockdown is highly important to control COVID-19 and also to contribute for self-regeneration of nature. Drought-driven humanitarian emergencies are becoming more frequent in the Horn of Africa where millions of people in this arid region face chronic water and food insecurity. Evidence from the region shows increasing reliance on groundwater supplies, infrastructure and institutional systems in response to decreasing rainfall. Drought emergencies can be mitigated by investing in resilience efforts that make safe water reliably available at strategic groundwater abstraction locations during cycles of water stress. A combination of early warning data, policy reform, asset management and improved rural water supplies and maintenance may enable rapid, responsive, and accountable water governance that is more cost effective than emergency relief and better positioned to absorb and adapt to shocks.

Autoři článku: Uptonramirez1485 (Harrington Thomas)