Ramosbenjamin0858
Six months after transplantation, PM clams demonstrated a lower ability to respond to environmental/physiological stressors related to the summer season, and the hepatopancreas-associated microbiota still showed different compositions among PM and CH clams. This study confirms that different stressors have predictable effects in clams at different biological levels and demonstrates that chronic exposure to pollutants leads to long-lasting effects on the animal hologenome. In addition, no genetic differentiation between samples from the two areas was detected, confirming that PM and CH clams belong to a single population. Overall, the obtained responses were largely reversible and potentially related to phenotypic plasticity rather than genetic adaptation. The results here presented will be functional for the assessment of the environmental risk imposed by chemicals on an economically important bivalve species.The assessment of the genetic structuring of biodiversity is crucial for management and conservation. This is particularly critical for widely distributed and highly mobile deep-water teleosts, such as hoki (Macruronus novaezelandiae). This species is significant to Māori people and supports the largest commercial fishery in New Zealand, but uncertainty about its stock structure presents a challenge for management. Here, we apply a comprehensive genomic analysis to shed light on the demographic structure of this species by (1) assembling the genome, (2) generating a catalogue of genome-wide SNPs to infer the stock structure and (3) identifying regions of the genome under selection. The final genome assembly used short and long reads and is near complete, representing 93.8% of BUSCO genes, and consisting of 566 contigs totalling 501 Mb. Whole-genome re-sequencing of 510 hoki sampled from 14 locations around New Zealand and Australia, at a read depth greater than 10×, produced 227,490 filtered SNPs. Analyses of these SNPs were able to resolve the stock structure of hoki into two genetically and geographically distinct clusters, one including the Australian and the other one all New Zealand locations, indicating genetic exchange between these regions is limited. Location differences within New Zealand samples were much more subtle (global F ST = 0.0006), and while small and significant differences could be detected, they did not conclusively identify additional substructures. Ten putative adaptive SNPs were detected within the New Zealand samples, but these also did not geographically partition the dataset further. Contemporary and historical N e estimation suggest the current New Zealand population of hoki is large yet declining. Overall, our study provides the first genomic resources for hoki and provides detailed insights into the fine-scale population genetic structure to inform the management of this species.There has been a steady rise in the use of dormant propagules to study biotic responses to environmental change over time. This is particularly important for organisms that strongly mediate ecosystem processes, as changes in their traits over time can provide a unique snapshot into the structure and function of ecosystems from decades to millennia in the past. Understanding sources of bias and variation is a challenge in the field of resurrection ecology, including those that arise because often-used measurements like seed germination success are imperfect indicators of propagule viability. Using a Bayesian statistical framework, we evaluated sources of variability and tested for zero-inflation and overdispersion in data from 13 germination trials of soil-stored seeds of Schoenoplectus americanus, an ecosystem engineer in coastal salt marshes in the Chesapeake Bay. We hypothesized that these two model structures align with an ecological understanding of dormancy and revival zero-inflation could arise due to failed germinations resulting from inviability or failed attempts to break dormancy, and overdispersion could arise by failing to measure important seed traits. A model that accounted for overdispersion, but not zero-inflation, was the best fit to our data. Tetrazolium viability tests corroborated this result most seeds that failed to germinate did so because they were inviable, not because experimental methods failed to break their dormancy. Seed viability declined exponentially with seed age and was mediated by seed provenance and experimental conditions. Our results provide a framework for accounting for and explaining variability when estimating propagule viability from soil-stored natural archives which is a key aspect of using dormant propagules in eco-evolutionary studies.Hybrid zones between diverged lineages offer a unique opportunity to study evolutionary processes related to speciation. Natural and anthropogenic hybridization in the black basses (Micropterus spp.) is well documented, including an extensive intergrade zone between the widespread northern Largemouth Bass (M. salmoides) and the Florida Bass (M. floridanus). Phenotypic surveys have identified an estuarine population of Largemouth Bass (M. salmoides) in the Mobile-Tensaw Delta, with larger relative weight and smaller adult size compared to inland populations, suggesting a potential third lineage of largemouth bass. To determine the evolutionary relationships among these Mobile Delta bass populations, M. salmoides and M. floridanus, putative pure and intergrade populations of all three groups were sampled across the eastern United States. Phylogenetic analyses of 8582 nuclear SNPs derived from genotype-by-sequencing and the ND2 mitochondrial gene determined that Delta bass populations stem from a recently diverged lineage of Largemouth Bass. Using a novel quantitative pipeline, a panel of 73 diagnostic SNPs was developed for the three lineages, evaluated for accuracy, and then used to screen 881 samples from 52 sites for genetic integrity and hybridization on the Agena MassARRAY platform. These results strongly support a redrawing of native ranges for both the intergrade zone and M. floridanus, which has significant implications for current fisheries management. Furthermore, Delta bass ancestry was shown to contribute significantly to the previously described intergrade zone between northern Largemouth Bass and Florida Bass, suggesting a more complex pattern of secondary contact and introgression among these diverged Micropterus lineages.Small, isolated populations present a challenge for conservation. The dueling effects of selection and drift in a limited pool of genetic diversity make the responses of small populations to environmental perturbations erratic and difficult to predict. This is particularly true at the edge of a species range, where populations often persist at the limits of their environmental tolerances. Populations of cisco, Coregonus artedi, in inland lakes have experienced numerous extirpations along the southern edge of their range in recent decades, which are thought to result from environmental degradation and loss of cold, well-oxygenated habitat as lakes warm. learn more Yet, cisco extirpations do not show a clear latitudinal pattern, suggesting that local environmental factors and potentially local adaptation may influence resilience. Here, we used genomic tools to investigate the nature of this pattern of resilience. We used restriction site-associated DNA capture (Rapture) sequencing to survey genomic diversity and differentn the complex dynamics influencing these isolated populations and provide valuable information for their conservation.Deeply diverged yet hybridizing species provide a system to investigate the final stages of the speciation process. We study a hybridizing pair of salamander species-the morphologically and genetically drastically different newts Triturus cristatus and T. marmoratus-with a panel of 32 nuclear and mitochondrial genetic markers. Morphologically identified hybrids are mostly of the F1 generation and mothered by T. cristatus. The sex ratio of the F1 hybrid class is reciprocally skewed, with a preponderance of females in T. cristatus-mothered hybrids and males in T. marmoratus-mothered hybrids. This amounts to the Haldane effect operating in one direction of the cross. Deeper generation hybrids are occasionally produced, possibly including F1 hybrid × backcross hybrid offspring. Interspecific gene flow is low, yet skewed toward T. cristatus. This asymmetry may be caused by hybrid zone movement, with the superseding species being predisposed to introgression. The persisting gene flow between deeply differentiated species supports the notion that full genetic isolation may be selected against. Conversely, published morphological data suggest that introgressive hybridization is detrimental, with digital malformations occurring more frequently in the area of sympatry. Finally, to assist field identification, both within the area of natural range overlap and concerning anthropogenic introductions elsewhere, we document the phenotypical variation of two generations of hybrids compared with both parental species. We suggest that fluctuating range boundaries, ecological segregation, cytonuclear incompatibilities and hybrid breakdown through Bateson-Dobzhansky-Muller incompatibilities all contribute to species integrity, despite incomplete isolation during secondary contact.While uncovering the costs and benefits of polyandry has attracted considerable attention, assessing the net effect of sexual selection on population fitness requires the experimental manipulation of female mating over generations, which is usually only achievable in laboratory populations of arthropods. However, knowing if sexual selection improves or impairs the expression of life-history traits is key for the management of captive populations of endangered species, which are mostly long-lived birds and mammals. It might therefore be questionable to extrapolate the results gathered on laboratory populations of insects to infer the net effect of sexual selection on populations of endangered species. Here, we used a longitudinal dataset that has been collected on a long-lived bird, the houbara bustard, kept in a conservation breeding program, to investigate the effect of enforced monoandry on female investment into reproduction. In captivity, female houbara bustards are artificially inseminated with sperm collected from a single male (enforced monoandry), or sequentially inseminated with semen of different males (polyandry), allowing postcopulatory sexual selection to operate. We identified female lines that were produced either by monoandrous or polyandrous inseminations over three generations, and we compared reproductive investment of females from the two mating system groups. We found that females in the polyandrous lines had higher investment into reproduction as they laid more eggs per season and produced heavier hatchlings. Higher reproductive investment into reproduction in the polyandrous lines did not result from inherited differences from females initially included in the two mating system groups. These results show that removal of sexual selection can alter reproductive investment after only few generations, potentially hindering population fitness and the success of conservation breeding programs.