Johannesentorp1563

Z Iurium Wiki

Verze z 22. 9. 2024, 16:24, kterou vytvořil Johannesentorp1563 (diskuse | příspěvky) (Založena nová stránka s textem „The blockage of these protein degradation pathways aggravates PBDEQ-induced cytotoxicity in LO2 cells, whilst antioxidant N-acetyl-cysteine (NAC) rescues P…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The blockage of these protein degradation pathways aggravates PBDEQ-induced cytotoxicity in LO2 cells, whilst antioxidant N-acetyl-cysteine (NAC) rescues PBDEQ-induced oxidative protein damage conversely. In summary, our current study first demonstrated PBDEQ-induced protein oxidative damage in LO2 cells, which offer a better understanding of the cytotoxicity of PBDEs and corresponding metabolites.Autopsy of carbon-PTFE cathodes was performed by addressing their degradation in a commercial plate-and-frame cell equipped with a Nb-BDD anode. Cell is arranged within an electrochemical pilot plant designed for treating wastewaters by electrochemical Fenton-like processes, thus an efficient electrocatalytic production of H2O2 is necessary to guarantee Fenton's reaction. Significant decrease in H2O2 electrogeneration occurred during pilot plant operation, hindering the efficient performance of Fenton-like processes. Two cathodes were studied, first was operated at pH 3 and second at neutral pH by using EDDS as complexing agent to maintain iron in solution. Electrogenerated H2O2 decreased from 43 mg L-1 to 16 mg L-1 in the first cathode after 50 h of operation and from 49 mg L-1 to 24 mg L-1 in the second one after 26 h of operation. Both were cleaned with 30% (v/v) solution of HCl/water for 24 h and H2O2 production was recovered only in the second cathode (able to generate 39 mg L-1). Autopsy of the cathodes was tackled by scanning electron microscopy (SEM) and X-ray energy dispersive (EDX), evidencing a strong degradation of first cathode surface and iron oxide inlays in second one due to the decomposition of Fe3+EDDS and consequent iron precipitation at neutral pH.Preparation of carbonaceous catalysts by doping with boron (B) is one of the most promising strategies for substitution of toxic transition metal catalysts in advanced oxidation processes. Selleckchem 740 Y-P This study was dedicated to reveal the intrinsic structure-performance relationship of peroxomonosulfate (PMS) activation by B-doped carbon nanotubes toward catalytic oxidation of pollutants. Performance tests showed the catalyst realized more than 95% phenol removal at pH 7 in 1 h and 69.4% total organic carbon removal. The catalysts were characterized using scanning electron microscopy (SEM), transmission electron microscope (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR). Characterization results indicated that the topography of carbon nanotube was not significantly changed after B doped, while the defect sites increased from 1.05 to 1.23. The newly formed active sites may be presented in the form of C3B, CBO2 and CBO3, and reactive oxygen species (ROS) including OH, SO4-•, O2-• and 1O2 might be generated after activation by the active sites. Furthermore, B-MWNT-PMS∗ was also be detected by In-situ Raman, confirming the non-radical pathway and electron transfer mechanism. Beside of phenol, the reaction system of B-MWNT/PMS also can remove methylene blue, bisphenol S and diuron at pH = 7, confirming the universality and promising of this advanced oxidation technology.

Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality worldwide, and nitrogen dioxide (NO

) is a potential environmental risk factor for COPD. However, association between ambient NO

and COPD risk remains underrecognized, especially in the elderly. This study aimed to explore association between NO

and years of life lost (YLL) from COPD in the elderly from 2013 to 2017 in 37 major cities in China.

Ambient NO

data and COPD morality information were obtained from the National Urban Air Quality Real-time Publishing Platform and the Chinese Centers for Disease Control and Prevention, respectively. City-specific relative changes in YLL were estimated by generalized additive models, and meta-analysis was used to combine city-specific results. Potential modifications were evaluated. Economic loss due to excess YLL from COPD associated with ambient NO

was evaluated.

An increase of 10μg/m

in NO

for 2-day moving average led to 0.94% (95% CI 0.56%, 1.31%) relative increase in COPD YLL. The associations were significantly higher in South than North China. Higher estimated effects were found in the warm than the cool season in the southern region. The relevant economic loss accounted for 0.04% (95% CI 0.02%, 0.05%) of the gross domestic product (GDP) in China during the same period.

The findings provide evidence on the impact of short-term NO

exposure on COPD YLL in the elderly, which indicated more stringent control of NO

pollution and highlighted the need to protect the elderly during the warm season in South China.

The findings provide evidence on the impact of short-term NO2 exposure on COPD YLL in the elderly, which indicated more stringent control of NO2 pollution and highlighted the need to protect the elderly during the warm season in South China.To overcome restrictions on the use of fish in toxicity testing, the present study proposes to compare the 50% growth inhibition potential (EC50) of four types of effluents on the rat cardiomyoblast H9c2(2-1) cell line by using the sulforhodamine B (SRB) cell mass colorimetric assay, with the corresponding fish lethal test results. Our objective was to evaluate if H9c2(2-1) cells shows comparable sensitivities, in both relative and absolute terms, to those provided by fish. In parallel, this study also compared the results of the chemical characterization with the legislation in force for environmental protection against effluent release into the receiving environment. Moreover, we tested the H9c2(2-1)-based SRB assays with the metals of concern found in the effluent samples. Both fish and cell assays showed the same toxicity rank for effluents Metal > Oil > Municipal > Paper, and it should be stressed that the complementarity of using chemical and biological data represents a step forward to guarantee both environmental and human safety, since the chemical characterization showed a different toxicity rank Metal > Municipal > Oil > Paper. Regarding metal elements, the short-term fish results showed a toxicity rank non-comparable with the rank obtained for cells. Nevertheless, the gathered results reveal the potentiality of the in vitro H9c2(2-1) platform as an alternative for fish lethal testing to assess, in absolute terms, the toxicity of effluents, particularly municipal effluents, and metals.

Autoři článku: Johannesentorp1563 (Duncan Soto)