Chasebak7104

Z Iurium Wiki

Verze z 22. 9. 2024, 16:22, kterou vytvořil Chasebak7104 (diskuse | příspěvky) (Založena nová stránka s textem „The incidence rate of AEFIs in women vaccinated during pregnancy was 1.1 per 1000 (95% CI 0.3-4.1). Of 833 pregnant women vaccinated with recombinant aPgen…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The incidence rate of AEFIs in women vaccinated during pregnancy was 1.1 per 1000 (95% CI 0.3-4.1). Of 833 pregnant women vaccinated with recombinant aPgen or TdaPgen, 91.4% (95% CI 89.3-93.3) had uncomplicated pregnancies and 98.7% (95% CI 97.7-99.4) of the 855 babies delivered by these women were born healthy, which exceeds rates generally reported in Thailand. There were no vaccine-related serious adverse events reported during the surveillance period. In conclusion, active pharmacovigilance confirms that the recombinant pertussis vaccines aPgen (Pertagen) and TdaPgen (Boostagen) are safe in adolescents and adults, including pregnant women vaccinated in the second or third trimester of pregnancy.Dung and urine patches on grasslands are hotspots of greenhouse gas (GHG) emissions in temperate regions, while its importance remains controversial for tropical regions as emissions seem to be lower. Here we investigated N2O, CH4 and CO2 emissions from urine and dung patches on tropical pastures in Kenya, thereby disentangling interactive and pure water, dung or urine effects. GHG fluxes were monitored with automated chambers for 42-59 days covering three seasons (short rainy season, long rainy season, dry season) for six treatments (Control; +1 L water; +1 kg dung; 1 L urine; 1 L water +1 kg dung; 1 L urine +1 kg dung). Cumulative CO2 emissions did not differ among treatments in any of the seasons. Water or urine addition alone did not affect CH4 fluxes, but these were elevated in all dung-related treatments. Scaled up on the total area covered, dung patches halve the CH4 sink strength of tropical pastures during the dry season, while during the rainy season they may turn tropical pastures into a small CH4 source. For N2O, both dung and urine alone and in combination stimulated emissions. While the N2O emission factor (EFN2O) from dung being constant across seasons, the EFN2O for urine was greater during the short rainy season than during the dry season. Combined application of urine + dung was additive on EFN2O. While the mean dung EFN2O in our study (0.06%) was similar to the IPCC Guidelines for National GHG Inventories EFN2O for dry climate (0.07%), the urine EFN2O we measured (0.03-0.25%) was lower than the IPCC value (0.32%). In addition, the IPCC Guidelines assume a urine-N dung-N ratio of 0.660.34, which is higher than found for SSA ( less then 0.500.50). Consequently, IPCC Guidelines still overestimate N2O emissions from excreta patches in SSA.Previous studies on SARS-CoV and MERS-CoV reported the detection of viral RNA in the stool of both symptomatic and asymptomatic individuals. These clinical observations suggest that municipal and hospital wastewater from affected communities may contain SARS-CoV-2 RNA. Recent studies have also reported the presence of SARS-CoV-2 RNA in human feces. Wastewater-based epidemiology (WBE) is a promising approach to understand the prevalence of viruses in a given catchment population, as wastewater contains viruses from symptomatic and asymptomatic individuals. The current study reports the first detection of SARS-CoV-2 RNA in untreated wastewater in Slovenia. Two sizes of centrifugal filters were tested 30 kDa and 10 kDA AMICON® Ultra-15 Centrifugal Filters, where 10 kDA resulted in a higher concentration factor and higher recovery efficiency. The results in hospital wastewater show that WBE can be used for monitoring COVID -19 and could be applied in municipal wastewater treatment plants as a potential complementary tool for public health monitoring at population level.For the first time, the contents of potentially toxic elements (PTEs) in road dust and in its PM10 fraction were studied in Moscow from June 09 to July 30, 2017 on roads with different traffic intensities, inside courtyards with parking lots, and on pedestrian walkways in parks. The contents of PTEs in road dust and PM10 fraction were analyzed by ICP-MS and ICP-AES. The main pollutants of road dust and its PM10 fraction included Sb, Zn, W, Sn, Bi, Cd, Cu, Pb, and Mo. PM10 was a major carrier of W, Bi, Sb, Zn, Sn (accounts for >65% of their total contents in road dust); Cu (>50%); and Cd, Pb, Mo, Co, Ni (30-50%). PM10 fraction was 1.2-6.4 times more polluted with PTEs than bulk samples. Resuspension of roadside soil particles accounted for 34% of the mass of PTEs in road dust and for 64% in the PM10 fraction. Other important sources of PTEs were non-exhaust vehicles emissions (~ 20% for dust and ~14% for PM10) and industrial emissions (~20% and ~6%). The road dust and PM10 particles were most contaminated in the central part of the city due to the large number of cars and traffic congestions. Local anomalies of individual PTEs were observed near industrial zones mainly in the west, south, and southeast of Moscow. In the yards of residential buildings the total enrichment of road dust and PM10 with PTEs was only 1.1-1.5 times lower than that on major roads which poses a serious danger to the population spending a significant part of their lives in residential areas. The spatial pattern of the PTEs distribution in road dust and its PM10 fraction should assist in more efficient planning of washing and mechanical cleaning of the road surface from dust to minimize the risk to public health.

Cation exchange membranes (CEMs) are subject to fouling when utilized to desalinate wastewater from the oil and gas industry, hampering their performance. The kind and extent of the fouling are most likely dependent on the composition of the stream, which in practical applications can vary significantly.

Fouling experiments were performed on commercial cation exchange membranes, which were used in electrodialysis runs to desalinate solutions of varying composition. The variations included ionic strength, type of ions, amount of viscosifying polyelectrolyte (partially hydrolyzed polyacrylamide), presence of crude oil, and surfactants. Performance parameters, like electric potential and pH, were monitored during the runs, after which the membranes were recovered and analyzed.

Fouling was detected on most CEMs and occurred mainly in the presence of the viscosifying polyelectrolyte. Under normal pH conditions (pH~8), the polyelectrolyte fouled the concentrate side of the CEMs, as expected due to electrophoresis. However, by applying a current in the opposite direction, the polyelectrolyte layer could be removed. Precipitation occurred mostly on the opposite side of the membrane, with different morphology depending on the feed composition.

Fouling was detected on most CEMs and occurred mainly in the presence of the viscosifying polyelectrolyte. Under normal pH conditions (pH ~ 8), the polyelectrolyte fouled the concentrate side of the CEMs, as expected due to electrophoresis. However, by applying a current in the opposite direction, the polyelectrolyte layer could be removed. Precipitation occurred mostly on the opposite side of the membrane, with different morphology depending on the feed composition.For solvent-free catalytic oxidations, low efficiency resulted from poor mass transfer and insufficient utilization of active centers remains a tough problem. Herein, we demonstrate a novel hybrid core-shell catalyst (TS@PMO) with an amphiphilic shell and a Ti-surface-enriched mesoporous TiO2-SiO2 (TS) core to address this challenge. Selleckchem Guanosine 5'-monophosphate Such TS@PMO realizes its amphiphilicity via an ex situ formed periodic mesoporous organosilica (PMO) shell. Simultaneously, by a unique etching effect induced by organic precursor growth on [SiO4] tetrahedra in TS core, active Ti sites are facilely enriched in near-surface layer of core and extra mesoporous cavities are introduced for substrate reservation. When applied for solvent-free epoxidation of methyl oleate (MO) with H2O2, TS@PMO exhibits remarkably boosted catalytic activity (X = 90.2%) and epoxide selectivity (S = 70.2%), overwhelming the unmodified titanosilicate (X = 63.7%, S = 49.2%) and Ti-containing organosilica (X = 39.8%, S = 25.0%). Such result benefits from an evidently enhanced interphase mass transfer and sufficiently accessible active Ti sites in TS@PMO. On the one hand, amphiphilic PMO shell can efficiently collect hydrophobic substrate and H2O2, while abundant mesopores in the shell offer open-path for them to access active sites in the core; on the other hand, an increased framework Ti (IV) density and their surface-enrichment in TS core greatly improve the utilization of active Ti sites. This study effectively makes up for the deficiencies of slow mass transfer and insufficient utilization of conventional titanosilicates in biphasic reactions, which paves a new avenue to exploit other hybrid catalysts for high-efficiency solvent-free catalysis.As sulfosalicylic acid (SUA) is extensively used as a pharmaceutical product, discharge of SUA into the environment becomes an emerging environmental issue because of its low bio-degradability. Thus, SO4--based advanced oxidation processes have been proposed for degrading SUA because of many advantages of SO4-. As Oxone represents a dominant reagent for producing SO4-, and Co is the most capable metal for activating Oxone to generate SO4-, it is critical to develop an effective but easy-to-use Co-based catalysts for Oxone activation to degrade SUA. Herein, a 3D hierarchical catalyst is specially created by decorating Co3O4 nanocubes (NCs) on macroscale nitrogen-doped carbon form (NCF). This Co3O4-decorated NCF (CONCF) is free-standing, macroscale and even squeezable to exhibit interesting and versatile features. More importantly, CONCF consists of Co3O4 NCs evenly distributed on NCF without aggregation. The NCF not only serves as a support for Co3O4 NCs but also offers additional active sites to synergistically enhance catalytic activities towards Oxone activation. Therefore, CONCF exhibits a higher catalytic activity than the conventional Co3O4 nanoparticles for activating Oxone to fully eliminate SUA in 30 min with a rate constant of 0.142 min-1. CONCF exhibits a much lower Ea value of SUA degradation (35.2 kJ/mol) than reported values, and stable catalytic activities over multi-cyclic degradation of SUA. The mechanism of SUA degradation is also explored, and degradation intermediates of SUA degradation are identified to provide a possible pathway of SUA degradation. These features validate that CONCF is certainly a promising 3D hierarchical catalyst for enhanced Oxone activation to degrade SUA. The findings obtained here are also insightful to develop efficient heterogeneous Oxone-activating catalysts for eliminating emerging contaminants.Carbon fiber (CF) is a significant multifunction material, which is extensively used in aircraft because of its superb performance. However, its microwave absorption properties (MAPs) are seriously restricted as a result of the impedance mismatch issue. To address this issue, an efficient strategy is conducted by a series of CF@MoS2 and CF@MoS2@Fe3O4 composites that are fabricated by in-situ grown MoS2 nanosheets (MoS2-NS) and Fe3O4 nanoparticles (Fe3O4-NPs) on the surface of CF. The results of microwave absorption performance (MAP) reveal that the minimum reflection loss (RL) can reach -21.4 dB with a CF@MoS2 composite coating thickness of 3.8 mm; the effective attenuation bandwidth (RL less then -10 dB, i.e., 90% microwave energy is attenuated) is up to 10.85 GHz (7.15-18.0 GHz). From a detailed analysis, it is observed impedance mismatch is the critical limiting factor for MAPs rather than attenuation. Furthermore, for CF@MoS2@Fe3O4, the MAP is strongly dependent on the level of coating of magnetic Fe3O4-NPs on the surface of CF@MoS2 composites.

Autoři článku: Chasebak7104 (Balling Sheehan)