Colemanwhittaker9274
Speech arrest is a common but crucial negative motor response (NMR) recorded during intraoperative brain mapping. However, recent studies have reported nonspeech-specific NMR sites in the ventral precentral gyrus (vPrCG), where stimulation halts both speech and ongoing hand movement. The aim of this study was to investigate the spatial relationship between speech-specific NMR sites and nonspeech-specific NMR sites in the lateral frontal cortex.
In this prospective cohort study, an intraoperative mapping strategy was designed to identify positive motor response (PMR) sites and NMR sites in 33 consecutive patients undergoing awake craniotomy for the treatment of left-sided gliomas. Patients were asked to count, flex their hands, and simultaneously perform these two tasks to map NMRs. Each site was plotted onto a standard atlas and further analyzed. The speech and hand motor arrest sites in the supplementary motor area of 2 patients were resected. The 1- and 3-month postoperative language and motor functionsial distribution of speech-related NMR sites will be helpful in surgical planning and intraoperative mapping and provide in-depth insight into the motor control of speech production.
The study results demonstrated a functional segmentation of speech-related NMRs in the lateral frontal cortex and that most of the stimulation-induced speech arrest sites are not specific to speech. A better understanding of the spatial distribution of speech-related NMR sites will be helpful in surgical planning and intraoperative mapping and provide in-depth insight into the motor control of speech production.
Neurological diseases seriously affect human health, which are arousing wider attention, and it is a great challenge to discover neuroprotective drugs with minimal side-effects and better efficacies. Natural agents derived from herbs or plants have become unparalleled resources for the discovery of novel drug candidates. Panax ginseng C. A.Meyer, a well-known herbal medicine in China, occupies a very important position in traditional Chinese medicines (TCMs) with a long history of clinical application. Ginsenoside Rd is the active compound in P. ginseng known to have broad-spectrum pharmacological effects to reduce neurological damage that can lead to neurological diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, depression, cognitive impairment, and cerebral ischemia.
To review and discuss the effects and mechanisms of ginsenoside Rd in the treatment of neurological diseases.
The related information was compiled by the major scientific databases, such as Chinese Nation a novel clinical candidate drug for treating neurological diseases.The aryl hydrocarbon receptor (AHR) is a member of the basic helix-loop-helix/Per-ARNT-Sim (bHLH-PAS) family of transcription factors and has broad biological functions. Early after the identification of the AHR, most studies focused on its roles in regulating the expression of drug-metabolizing enzymes and mediating the toxicity of dioxins and dioxin-like compounds (DLCs). Currently, more diverse functions of AHR have been identified, indicating that AHR is not just a dioxin receptor. Dioxins and DLCs occur ubiquitously and have diverse health/ecological risks. Additional research is required to identify both shared and compound-specific mechanisms, especially for emerging DLCs such as polyhalogenated carbazoles (PHCZs), polychlorinated diphenyl sulfides (PCDPSs), and others, of which only a few investigations have been performed at present. Many of the toxic effects of emerging DLCs were observed to be predominantly mediated by the AHR because of their structural similarity as dioxins, and the in vitro TCDD-relative potencies of certain emerging DLC congeners are comparable to or even greater than the WHO-TEFs of OctaCDD, OctaCDF, and most coplanar PCBs. Due to the close relationship between AHR biology and environmental science, this review begins by providing novel insights into AHR signaling (canonical and non-canonical), AHR's biochemical properties (AHR structure, AHR-ligand interaction, AHR-DNA binding), and the variations during AHR transactivation. Then, AHR ligand classification and the corresponding mechanisms are discussed, especially the shared and compound-specific, AHR-mediated effects and mechanisms of emerging DLCs. Accordingly, a series of in vivo and in vitro toxicity evaluation methods based on the AHR signaling pathway are reviewed. In light of current advances, future research on traditional and emerging DLCs will enhance our understanding of their mechanisms, toxicity, potency, and ecological impacts.Mehdizadeh et al. (2021) reported the impact of biochar on cadmium toxicity in Ocimum ciliatum. click here As far as the conclusions may be correct (and the positive impact of various biochars is known in numerous experimental setups/species), several numerical mistakes reported in results are not acceptable in any scientific journal. It seems that reviewers and handling editor overlooked these problems and biochemical aspects of this work (along with the impact of biochar on Cd accumulation) can be cited only with great doubts about the correctness of the results. Generally, it is a challenge for reviewers and publishers, mainly in the actual time of a huge load of submissions, not to overlook basic technical mistakes. It is also a challenge for the authors to study literature and to verify uncertain data.Recent studies on pharmaceuticals have revealed the direct and indirect mechanisms that link human gut microbiome to xenobiotic biotransformation. Though environmental contaminants compose a vital portion of xenobiotics and share overlapping biotransformation pathways with gut microbial metabolites, the possible interplay between gut microbiome and biotransformation of environmental contaminants remains obscure. This study utilized bisphenol A (BPA) and p-cresol as model compounds to explore whether gut microbial metabolites could affect environmental phenol metabolism on both in vitro and in vivo models. We have observed some distinct biotransformation behavior, where in vivo mouse examination using 171 & 1972 μg/kg bw p-cresol injection exhibited enhancing effect on BPA metabolism, but p-cresol was found as a strong inhibitor from 10/5 μM in a non-competitive pattern for BPA biotransformation in in vitro models of liver S9 fractions and HepG2 cell line, respectively. A further investigation revealed that the expression of biotransformation enzyme genes including Ugt1a1, Ugt2b1, or Sult1a1 of p-cresol treated mice were dynamically induced. In silico docking approach was also utilized to explore the non-competitive inhibition mechanism by estimating the binding affinity of key enzyme SULT 1A1. Overall, our results provided a novel insight into the biotransformation interaction between gut microbiome and environmental contaminants.Soil amendments have been extensively used to remediate heavy metal contaminated soils by immobilizing or altering edaphic properties to reduce the bioavailability of heavy metals. However, the potential influences of long-term soil amendments applications on microbial communities and polluted soil health are still in its infancy despite that have been applied for decades. We used amplicon sequencing and q-PCR array to characterize the root-associated microbial community compositions and rhizosphere functional genes in a five-year field experiment with consecutive application of four amendments (lime, biochar, pig manure, and a commercial Mg-Ca-Si conditioner). Compared with the control, soil amendments reduced the available Cd (CaCl2 extractable Cd) in soils and strongly affected bacterial community compositions in four root-associated niches. Five rare keystone bacterial species were found belonging to the family Gallionellaceae (1), Haliangiaceae (1), Anaerolineaceae (2), and Xanthobacteraceae (1), which significantly correlated with soil pH and the functional genes nifH and phoD. Random forest analysis showed that rhizosphere soil pH and microbial functions, and root-associated keystone bacterial community compositions mainly influenced the Cd concentrations in rice grains. Altogether, our field data revealed five-year consecutive application of soil amendments regulated root-associated microbial community assembly and enhanced microbial functions, thereby improved rhizosphere health of Cd-contaminated soils.Usage of disposable plastic products and disinfectants has been skyrocketing due to the COVID-19 pandemic. The random disposal of plastic products may result in greater microplastic pollution. Benzalkonium chloride is known as one of the most common ingredients of disinfectants. In this study, the adsorption behavior of benzalkonium chlorides (BAC12, BAC14, BAC16) on polyethylene microplastics (PE-MPs) and the combined toxic effects were investigated using batch adsorption experiment and Daphnia magna. The results showed that PE-MPs had strong adsorption capacity for BACs and the adsorption capacity increased (11.03-22.77 mg g-1) with their octanol-water distribution coefficients. The effect of pH was negligible while dissolved organic matter inhibited the adsorption. A slightly inverse relationship between particle size of PE-MPs and adsorption was observed. Additionally, the MP aging with UV/H2O2 increased the adsorption of BAC12 but decreased that of relatively hydrophobic BAC14 and BAC16. The survival rate of Daphnia magna increased up to 100% in the presence of PE-MPs depending upon their adsorption capacities, suggesting that PE-MPs do not act as a carrier but rather as a scavenger for BACs. This study provides important information necessary for environmental risk assessment with regard to the combined pollution of MPs and toxic chemicals.A frost filter (FRF) was developed as a humidity pretreatment device (HPD) to improve the measurement of ambient ozone (O3). The FRF was produced in a tube, which was supercooled by a thermoelectric cooling device based on the Peltier effect. The relative humidity (RH) of the air samples varied from 30% to 80% at 25 °C, and the O3 concentration was set as 100 ppbv. Besides O3, SO2 at 150 ppbv was used for comparison. The density of the FRF was evaluated. Comparison studies on the humidity removal efficiencies and loss ratios of analytes among a FRF HPD, a short Nafion™ tube (NS), and a long Nafion™ tube (NL) HPDs were conducted. As results, the density of the FRF was dependent on the temperature at a fixed sampling flow rate. The outlet humidity of both the FRF and the NL HPDs were less than 8% RH at 25 °C. The mean concentrations of O3 and SO2 after the FRF HPD were similar to the initial concentrations at all humidity levels, whereas they were significantly different for both the NS and NL HPDs at higher humidity. This suggests that the FRF HPD is a reliable humidity pretreatment for O3 measurements.In this study, a new integrated multidisciplinary-based framework has been proposed to better understand the environmental risks of heavy metals (HMs) in agricultural soils. The source apportionment results revealed by a multilinear engine model were incorporated into the geochemical indexes and the probabilistic health risk assessment models for identifying the source-oriented risks of HMs in the environment. High-throughput sequencing-based metagenomic assembly analysis was used for characterizing the prevalence and dissemination risk of antibiotic resistomes and their associations with the geochemical enrichment of HMs in the soils. Results showed agricultural and industrial activities were the main sources of HMs in the environment. Although the soils were contaminated moderately by HMs and the health risks posed by soil metals were negligible for both adult and children, source-oriented risk evaluation suggested agricultural activities contributed relatively higher contamination and health risks than the other sources.