Bowenhermann2806
rminant in the H/PF/2013 strain, which is driven by the viral nucleotide sequence but not the amino acid sequence. Altogether, our work identifies a large and previously unreported difference in virulence between two commonly used ZIKV strains, in two widely used mouse models of ZIKV pathogenesis. Our results highlight that even very closely related virus strains can produce significantly different pathogenic phenotypes in common laboratory models.Japanese encephalitis virus (JEV) is a viral zoonosis that can cause viral encephalitis, death, and disability. Although the Culex mosquito is the primary vector of JEV, little is known about JEV transmission by this kind of mosquito. Here, we found that mosquito defensin facilitated the adsorption of JEV on target cells via the defensin/lipoprotein receptor-related protein 2 (LRP2) axis. Mosquito defensin bound the ED III domain of the viral envelope (E) protein and directly mediated efficient virus adsorption on the target cell surface; the receptor LRP2, which is expressed on the cell surface, affected defensin-dependent adsorption. As a result, mosquito defensin enhanced JEV infection in the salivary gland, increasing the possibility of viral transmission by mosquitoes. These findings demonstrate the novel role of mosquito defensin in JEV infection and the mechanisms through which the virus exploits mosquito defensin for infection and transmission.IMPORTANCE In this study, we observed the complex roles of mosquito defensin in JEV infection; mosquito defensin exhibited a weak antiviral effect but strongly enhanced binding. In the latter, defensin directly binds the ED III domain of the viral E protein and promotes the adsorption of JEV to target cells by interacting with lipoprotein receptor-related protein 2 (LRP2), thus accelerating virus entry. Together, our results indicate that mosquito defensin plays an important role in facilitating JEV infection and potential transmission.Guanylate binding protein 5 (GBP5) belongs to the GTPase subfamily, which is mainly induced by interferon gamma (IFN-γ) and is involved in many important cellular processes, including inflammasome activation and innate immunity against a wide variety of microbial pathogens. However, it is unknown whether GBP5 inhibits respiratory syncytial virus (RSV) infection. In this study, we identified GBP5 as an effector of the anti-RSV activity of IFN-γ and found that in children, the weaker immune response, especially the weaker IFN-γ response and the decreased GBP5 expression, leads to RSV susceptibility. Furthermore, we revealed that GBP5 reduced the cell-associated levels of the RSV small hydrophobic (SH) protein, which was identified as a viroporin. In contrast, overexpression of the SH protein rescued RSV replication in the presence of GBP5. The GBP5-induced decrease in intracellular SH protein levels is because GBP5 promotes the release of the SH protein into the cell culture. Moreover, the GBP5 C583A mutants wiexploring the pathogenic mechanisms of RSV and identifying essential genes which inhibit RSV infection are necessary to develop an effective strategy to control RSV infection. Here, we report that the IFN-inducible gene GBP5 potently inhibits RSV replication by reducing the cell-associated levels of the RSV small hydrophobic (SH) protein, which is a viroporin. In contrast, the RSV G protein was shown to upregulate the expression of the DZIP3 protein, an E3 ligase that degrades GBP5 through the proteasomal pathway. Our study provides important information for the understanding of the pathogenic mechanisms of RSV and host immunity as well as the complicated interplay between the virus and host.Since the first outbreak in 2013, the influenza A (H7N9) virus has continued emerging and has caused over five epidemic waves. Suspected antigenic changes of the H7N9 virus based on hemagglutination inhibition (HI) assay during the fifth outbreak have prompted the update of H7N9 candidate vaccine viruses (CVVs). In this study, we comprehensively compared the serological cross-reactivities induced by the hemagglutinins (HAs) of the earlier CVV A/Anhui/1/2013 (H7/AH13) and the updated A/Guangdong/17SF003/2016 (H7/GD16). We found that although H7/GD16 showed poor HI cross-reactivity to immune sera from mice and rhesus macaques vaccinated with either H7/AH13 or H7/GD16, the cross-reactive neutralizing antibodies between H7/AH13 and H7/GD16 were comparably high. Passive transfer of H7/AH13 immune sera also provided complete protection against the lethal challenge of H7N9/GD16 virus in mice. Analysis of amino acid mutations in the HAs between H7/AH13 and H7/GD16 revealed that L226Q substitution increases the HA binGuangdong/17SF003/2016 (H7/GD16) increased the viral receptor-binding avidity to red blood cells with no impact on the antigenicity of H7N9 virus. Although immune sera raised by an earlier vaccine strain (H7/AH13) showed poor HI titers against H7/GD16, the H7/AH13 immune sera had potent cross-neutralizing antibody titers against H7/GD16 and could provide complete passive protection against H7N9/GD16 virus challenge in mice. Our study highlights that receptor-binding avidity might lead to biased antigenic evaluation by using the HI assay. Other serological assays, such as the microneutralization (MN) assay, should be considered a complementary indicator for analysis of antigenic variation and selection of influenza CVVs.SERINC5 is a 10-transmembrane-domain cellular protein that is incorporated into budding HIV-1 particles and reduces HIV-1 infectivity by inhibiting virus-cell fusion. selleck chemical HIV-1 susceptibility to SERINC5 is determined by sequences in the viral Env glycoprotein gp120, and the antiviral effect of SERINC5 is counteracted by the viral accessory protein Nef. While the precise mechanism by which SERINC5 inhibits HIV-1 infectivity is unclear, previous studies have suggested that SERINC5 affects Env conformation. To define the effects of SERINC5 on Env conformation, we quantified the binding of HIV-1 particles to immobilized Env-specific monoclonal antibodies. We observed that SERINC5 reduced the binding of HIV-1 particles bearing a SERINC5-susceptible Env to antibodies that recognize the V3 loop, a soluble CD4 (sCD4)-induced epitope, and an N-linked glycan. In contrast, SERINC5 did not alter the capture of HIV-1 particles bearing the SERINC5-resistant Env protein. Moreover, the effect of SERINC5 on antibody-dependent virus capture was abrogated by Nef expression.