Schultzmcintosh1209

Z Iurium Wiki

Verze z 22. 9. 2024, 14:32, kterou vytvořil Schultzmcintosh1209 (diskuse | příspěvky) (Založena nová stránka s textem „It is unexpected that a spin-glass (SG) transition, which generally occurs only in systems with some form of disorder, was observed in the ThCr2Si2-type co…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

It is unexpected that a spin-glass (SG) transition, which generally occurs only in systems with some form of disorder, was observed in the ThCr2Si2-type compound PrAu2Si2at a temperature of ∼3 K. This puzzling phenomenon was later explained based on a novel dynamic frustration model that does not involve static disorder. We present the results of re-verification of the reported SG behaviors by measuring the physical properties of three polycrystalline PrAu2Si2samples annealed under different conditions. Indeed, in the sample annealed at 827 °C for one week, a SG transition does occur at a temperature ofTf∼ 2.8 K as that reported previously in the literature. However, it is newly found that the SG effect is actually more pronounced in the as-cast sample, and almost completely disappears in the well-annealed (at 850 °C for four weeks) sample. The annealing effect observed in PrAu2Si2, that is, SG to paramagnetism transition is discussed by comparing with earlier results reported on the same system and other isomorphic compounds.Graphene oxide has covalently modified by chito oligosaccharides andγ-polyglutamic acid to form GO-CO-γ-PGA, which exhibits excellent performance as a drug delivery carrier, but this carrier did not have the ability to actively target. In this study, the targeting property of breast cancer tumor cell exosomes was exploited to give GO-CO-γ-PGA the ability to target breast tumor cells (MDA-MB-231), and the drug mitoxantrone (MIT) was loaded to finally form EXO-GO-CO-γ-PGA-MIT with an encapsulation efficiency of 73.02%. The pH response of EXO-GO-CO-γ-PGA showed a maximum cumulative release rate of 56.59% (pH 5.0, 120 h) and 6.73% (pH 7.4, 120 h) for MIT at different pH conditions.In vitrocellular assays showed that EXO-GO-CO-γ-PGA-MIT was more potent in killing MDA-MB-231 cells due to its targeting ability and had a significantly higher pro-apoptotic capacity compared to GO-CO-γ-PGA-MIT. The results showed that this bionic nano-intelligent drug delivery system has good drug slow release function and it can increase the local drug concentration of tumor and enhance the pro-apoptotic ability of MIT, so this newly synthesized bionic drug delivery carriers (EXO-GO-CO-γ-PGA-MIT) has potential application in breast cancer treatment.Objective. To develop a novel, free-induction-decay (FID)-calibrated single-shot simultaneous multi-slice fast spin echo (SMS-FSE) with very long hard pulse trains for high encoding efficiency and low energy deposition.Approach. The proposed single-shot SMS-FSE employs a mixed pulse configuration in which a long excitation pulse that is spatially multi-band (MB) selective is used in conjunction with short spatially nonselective refocusing pulses. To alleviate energy deposition to tissues while reducing signal modulation along the echo train, variable low flip angles with signal prescription are utilized in the refocusing pulse train. A time-efficient FID calibration and correction method is introduced before aliased voxels in the slice direction are resolved. Simulations and experiments are performed to demonstrate the feasibility of the proposed method as an alternative to conventional HASTE for generatingT2-weighted images.Main results. Compared with conventional HASTE, the proposed method enhances imaging speed effectively by an MB factor up to 5 without apparent loss of image contrast while successfully eliminating FID artifacts.Significance. We successfully demonstrated the feasibility of the proposed method as an encoding- and energy-efficient alternative to conventional HASTE for generation ofT2-weighted contrast.Atomically two-dimensional (2D) materials have generated widespread interest for novel electronics and optoelectronics. Specially, owing to atomically thin 2D structure, the electronic bandgap of 2D semiconductors can be engineered by manipulating the surrounding dielectric environment. In this work, we develop an effective and controllable approach to manipulate dielectric properties of h-BN through gallium ions (Ga+) implantation for the first time. And the maximum surface potential difference between the intrinsic h-BN (h-BN) and the Ga+implanted h-BN (Ga+-h-BN) is up to 1.3 V, which is characterized by Kelvin probe force microscopy. More importantly, the MoTe2transistor stacked on Ga+-h-BN exhibits p-type dominated transfer characteristic, while the MoTe2transistor stacked on the intrinsic h-BN behaves as n-type, which enable to construct MoTe2heterojunction through dielectric engineering of h-BN. The dielectric engineering also provides good spatial selectivity and allows to build MoTe2heterojunction based on a single MoTe2flake. The developed MoTe2heterojunction shows stable anti-ambipolar behaviour. Furthermore, we preliminarily implemented a ternary inverter based on anti-ambipolar MoTe2heterojunction. Ga+implantation assisted dielectric engineering provides an effective and generic approach to modulate electric bandgap for a wide variety of 2D materials. And the implementation of ternary inverter based on anti-ambipolar transistor could lead to new energy-efficient logical circuit and system designs in semiconductors.Thrombosis in the circulation system can lead to major myocardial infarction and cardiovascular deaths. Understanding thrombosis formation is necessary for developing safe and effective treatments. In this work, using digital light processing (DLP)-based 3D printing, we fabricated sophisticatedin vitromodels of blood vessels with internal microchannels that can be used for thrombosis studies. In this regard, photoacoustic microscopy (PAM) offers a unique advantage for label-free visualization of the 3D-printed vessel models, with large penetration depth and functional sensitivity. We compared the imaging performances of two PAM implementations optical-resolution PAM and acoustic-resolution PAM, and investigated 3D-printed vessel structures with different patterns of microchannels. Our results show that PAM can provide clear microchannel structures at depths up to 3.6 mm. We further quantified the blood oxygenation in the 3D-printed vascular models, showing that thrombi had lower oxygenation than the normal blood. We expect that PAM can find broad applications in 3D printing and bioprinting forin vitrostudies of various vascular and other diseases.Objective.Supernumerary robotic limbs are body augmentation robotic devices by adding extra limbs or fingers to the human body different from the traditional wearable robotic devices such as prosthesis and exoskeleton. We proposed a novel motor imagery (MI)-based brain-computer interface (BCI) paradigm based on the sixth-finger which imagines controlling the extra finger movements. The goal of this work is to investigate the electromyographic (EEG) characteristics and the application potential of MI-based BCI systems based on the new imagination paradigm (the sixth finger MI).Approach.Fourteen subjects participated in the experiment involving the sixth finger MI tasks and rest state. Event-related spectral perturbation was adopted to analyze EEG spatial features and key-channel time-frequency features. Common spatial patterns were used for feature extraction and classification was implemented by support vector machine. A genetic algorithm (GA) was used to select combinations of EEG channels that maximized classification accuracy and verified EEG patterns based on the sixth finger MI. And we conducted a longitudinal 4 weeks EEG control experiment based on the new paradigm.Main results.Event-related desynchronization (ERD) was found in the supplementary motor area and primary motor area with a faint contralateral dominance. Unlike traditional MI based on the human hand, ERD was also found in frontal lobe. GA results showed that the distribution of the optimal eight-channel is similar to EEG topographical distributions, nearing parietal and frontal lobe. And the classification accuracy based on the optimal eight-channel (the highest accuracy of 80% and mean accuracy of 70%) was significantly better than that based on the random eight-channel (p less then 0.01).Significance.This work provided a new paradigm for MI-based MI system and verified its feasibility, widened the control bandwidth of the BCI system.For radiation dose assessment of computed tomography (CT), effective dose (ED) is often estimated by multiplying the dose-length product (DLP), provided automatically by the CT scanner, by a conversion factor. We investigated such conversion in CT venography of the lower extremities performed in conjunction with CT pulmonary angiography. The study subjects consisted of eight groups imaged using different scanners and different imaging conditions (five and three groups for the GE and Siemens scanners, respectively). Each group included ten men and ten women. The scan range was divided into four anatomical regions (trunk, proximal thigh, knee and distal leg), and DLP was calculated for each region (regional DLP). Regional DLP was multiplied by a conversion factor for the respective region, to convert it to ED. The sum of the ED values for the four regions was obtained as standard ED. Additionally, the sum of the four regional DLP values, an approximate of the scanner-derived DLP, was multiplied by the conversion factor for the trunk (0.015 mSv mGy cm-1), as a simplified method to obtain ED. When using the simplified method, ED was overestimated by 32.3%-70.2% and 56.5%-66.2% for the GE and Siemens scanners, respectively. The degree of overestimation was positively and closely correlated with the contribution of the middle and distal portions of the lower extremities to total radiation exposure. ED/DLP averaged within each group, corresponding to the conversion factor, was 0.0089-0.0114 and 0.0091-0.0096 mSv mGy cm-1for the GE and Siemens scanners, respectively. In CT venography of the lower extremities, ED is greatly overestimated by multiplying the scanner-derived DLP by the conversion factor for the trunk. The degree of overestimation varies widely depending on the imaging conditions. It is recommended to divide the scan range and calculate ED as a sum of regional ED values.Quantum electronics has significantly evolved over the last decades. Where initially the clear focus was on light-matter interactions, nowadays approaches based on the electron's wave nature have solidified themselves as additional focus areas. This development is largely driven by continuous advances in electron quantum optics, electron based quantum information processing, electronic materials, and nanoelectronic devices and systems. The pace of research in all of these areas is astonishing and is accompanied by substantial theoretical and experimental advancements. Thymidine RNA Synthesis chemical What is particularly exciting is the fact that the computational methods, together with broadly available large-scale computing resources, have matured to such a degree so as to be essential enabling technologies themselves. These methods allow to predict, analyze, and design not only individual physical processes but also entire devices and systems, which would otherwise be very challenging or sometimes even out of reach with conventional experimental capabilities. This review is thus a testament to the increasingly towering importance of computational methods for advancing the expanding field of quantum electronics. To that end, computational aspects of a representative selection of recent research in quantum electronics are highlighted where a major focus is on the electron's wave nature. By categorizing the research into concrete technological applications, researchers and engineers will be able to use this review as a source for inspiration regarding problem-specific computational methods.

Autoři článku: Schultzmcintosh1209 (Egholm Franks)