Castroslot5090

Z Iurium Wiki

Verze z 22. 9. 2024, 14:30, kterou vytvořil Castroslot5090 (diskuse | příspěvky) (Založena nová stránka s textem „The use of single-domain antibody fragments, or nanobodies, has gained popularity in recent years as an alternative to traditional monoclonal antibody-base…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The use of single-domain antibody fragments, or nanobodies, has gained popularity in recent years as an alternative to traditional monoclonal antibody-based approaches. Relatively little is known, however, about the utility of nanobodies as targeting agents for delivery of therapeutic cargoes, particularly to vascular epitopes or in the setting of acute inflammatory conditions. We used a nanobody (VCAMelid) directed against mouse vascular cell adhesion molecule 1 (VCAM-1) and techniques for site-specific radiolabeling and bioconjugation to measure targeting to sites of constitutive and inducible antigen expression and investigate the impact of various characteristics (affinity, valence, circulation time) on nanobody biodistribution and pharmacokinetics. Engineering of VCAMelid for bivalent binding (BiVCAMelid) increased affinity by an order of magnitude and provided 2.8- and 3.6-fold enhancements in splenic and brain targeting in naive mice, with a further 2.6-fold increase in brain uptake in the setting of focal CNS inflammation. In contrast, introduction of an albumin-binding arm (VCAM/ALB8) did not affect binding affinity, but its prolonged circulation time resulted in 3.5-fold and 17.4-fold increases in splenic and brain uptake at 20 min post-dose and remarkable 40-, 25-, and 15-fold enhancements in overall exposure of blood, spleen, and brain, respectively, relative to both VCAMelid and BiVCAMelid. Both therapeutic protein (superoxide dismutase, SOD-1) and nanocarrier (liposome) delivery were enhanced by conjugation to VCAM-1 targeted nanobodies. The bispecific VCAM/ALB8 maintained its superiority over VCAMelid in enhancing both circulation time and organ targeting of SOD-1, but its advantages were largely blunted by conjugation to liposomes.An enhanced, multiple lines of evidence approach was applied to assess potential toxicological effects associated with polluted sediments. Two in vitro bioassays (H4IIE-luc and Vibrio fischeri) and three in vivo bioassays (microalgae Isochrysis galbana and Phaeodactylum tricornutum; zebrafish embryo Danio rerio) were applied. To identify causative chemicals in samples, targeted analyses (polycyclic aromatic hydrocarbons (PAHs), styrene oligomers (SOs), and alkylphenols) and nontargeted full-scan screening analyses (FSA; GC- and LC-QTOFMS) were performed. First, great AhR-mediated potencies were observed in midpolar and polar fractions of sediment extracts, but known and previously characterized AhR agonists, including PAHs and SOs could not fully explain the total potencies of samples. Enoxolone was identified as a novel AhR agonist in a highly potent sediment fraction by use of FSA. Enoxolone has a relative potency of 0.13 compared to benzo[a]pyrene (1.0) in the H4IIE-luc bioassay. Nonylphenols associated with membrane damage that influenced the viability of the microalgae were also observed. Finally, inhibitions of bioluminescence of V. fischeri and lethality of D. rerio embryos were strongly related to nonpolar compounds. Overall, the present work addressed assay- and end point-specific variations and sensitivities for potential toxicities of mixture samples, warranting a significant utility of the "multiple lines of evidence" approach in ecological risk assessment.The biological application of photoactivatable ruthenium anticancer prodrugs is limited by the need to use poorly penetrating high-energy visible light for their activation. Upconverting nanoparticles (UCNPs), which produce high-energy light under near-infrared (NIR) excitation, can solve this issue, provided that they form stable, water (H2O)-dispersible nanoconjugates with the prodrug and that there is efficient energy transfer from the UCNP to the ruthenium complex. Herein, we report on the synthesis and photochemistry of the ruthenium(II) polypyridyl complex [Ru(bpy)2(3H)](PF6)2 ([1](PF6)2), where bpy = 2,2-bipyridine and 3H is a photocleavable bis(thioether) ligand modified with two phosphonate moieties. This ligand was coordinated to the ruthenium center through its thioether groups and could be dissociated under blue-light irradiation. Complex [1](PF6)2 was bound to the surface of NaYF4Yb3+,Tm3+@NaYF4Nd3+@NaYF4 core-shell-shell (CSS-)UCNPs through its bis(phosphonate) group, thereby creating a H2O-dispersible, thermally stable nanoconjugate (CSS-UCNP@[1]). Conjugation to the nanoparticle surface was found to be most efficient in neutral to slightly basic conditions, resulting in up to 2.4 × 103 RuII ions per UCNP. The incorporation of a neodymium-doped shell layer allowed for the generation of blue light using low-energy, deep-penetrating light (796 nm). This wavelength prevents the undesired heating seen with conventional UCNPs activated at 980 nm. Irradiation of CSS-UCNP@[1] with NIR light led to activation of the ruthenium complex [1](PF6)2. Although only one of the two thioether groups was dissociated under irradiation at 50 W·cm-2, we provide the first demonstration of the photoactivation of a ruthenium thioether complex using 796 nm irradiation of a H2O-dispersible nanoconjugate.The transformation of Fe-P complexes in bioreactors can be important for phosphorus (P) recovery from sludge. In this research, X-ray absorption near-edge structure analysis was conducted to quantify the transformation of Fe and P species in the sludge of different aging periods and in the subsequent acidogenic cofermentation for P recovery. P was readily removed from wastewater by Fe-facilitated coprecipitation and adsorption and could be extracted and recovered from sludge via acidogenic cofermentation and microbial iron reduction with food waste. The fresh Fe-based sludge mainly contained fresh ferrihydrite and amorphous FePO4 with sufficient accessible surface area, which was favorable for Fe-P mobilization and dissolution via microbial reaction. Ferric iron dosed into wastewater underwent rapid hydrolysis, clustering, aggregation, and slow crystallization to form hydrous iron oxides (HFO) with various complicated structures. With the aging of sludge in bioreactors, the HFO densified into phases with much reduced surface area and reactivity (e.g., goethite), which greatly increased the difficulty of P release and recovery. TPEN research buy Thus, aging of P-containing sludge should be minimized in wastewater treatment systems for the purpose of P recovery.

Autoři článku: Castroslot5090 (McCracken Conway)