Goodelorentzen8533

Z Iurium Wiki

Verze z 22. 9. 2024, 14:03, kterou vytvořil Goodelorentzen8533 (diskuse | příspěvky) (Založena nová stránka s textem „7%). Additionally, MDR P. aeruginosa was detected in animals, where a recent study reported the emergence of carbapenemase-producing P. aeruginosa in lives…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

7%). Additionally, MDR P. aeruginosa was detected in animals, where a recent study reported the emergence of carbapenemase-producing P. aeruginosa in livestock in Lebanon. Notably, no studies evaluated the contribution of MDR P. aeruginosa in the environment to human infections. Taken together, our findings highlight the need for AMR surveillance programs and a national action plan to combat resistance in Lebanon.For the treatment of periodontitis stage III/IV, a quadrant/week-wise debridement (Q-SRP) was compared with three full-mouth approaches full-mouth scaling (FMS, accelerated Q-SRP within 24 h), full-mouth scaling with chlorhexidine-based disinfection (FMD), and FMD with adjuvant erythritol air polishing (FMDAP). The objective of this prospective, randomized study (a substudy of ClinicalTrials.gov, identifier NCT03509233) was to compare the clinical and microbiological effects of the treatments. In total, 105 patients were randomized to one of the four aforementioned treatment groups, with n = 25, 28, 27, and 25 patients allocated to each group, respectively. At baseline and 3 and 6 months after treatment, the clinical parameters, including the pocket probing depths, clinical attachment level, and bleeding on probing, were recorded, and the prevalence of the total bacteria and four periodontal pathobionts (Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, and Tannerella forsythia) was determined using real-time quantitative PCR. Concerning the clinical outcomes, all the treatment modalities were effective, but the full-mouth approaches, especially FMDAP, were slightly superior to Q-SRP. Using the FMD approach, the reduction in the bacterial load and the number of pathobionts was significantly greater than for FMS, followed by Q-SRP. FMDAP was the least effective protocol for microbial reduction. However, after a temporary increase 3 months after therapy using FMDAP, a significant decrease in the key pathogen, P. gingivalis, was observed. These findings were not consistent with the clinical results from the FMDAP group. In conclusion, the dynamics of bacterial colonization do not necessarily correlate with clinical outcomes after full-mouth treatments for periodontitis stage III/IV.Infectious diseases caused by bacteria have led to a great threat to public health. With the significant advances in nanotechnology in recent decades, nanomaterials have emerged as a powerful tool to boost antibacterial performance due to either intrinsic bactericidal properties or by enhancing the delivery efficiency of antibiotics for effective pathogen killing. Vancomycin, as one of the most widely employed antimicrobial peptides, has a potent bactericidal activity, but at the same time shows a limited bioavailability. Silver nanoparticles have also been extensively explored and were found to have a well-recognized antibacterial activity and limited resistance potential; however, how to prevent nanosized Ag particles from aggregation in biological conditions is challenging. In this study, we aimed to combine the advantages of both vancomycin and nano-Ag for enhanced bacterial killing, where both antibacterial agents were successfully loaded onto a silica nanoparticle with a pollen-like morphology. The morphology of nano-Ag-decorated silica nanopollens was characterized using transmission electron microscopy and elemental mapping through energy dispersive spectroscopy. Silver nanoparticles with a size of 10-25 nm were observed as well-distributed on the surface of silica nanoparticles of around 200 nm. The unique design of a spiky morphology of silica nano-carriers promoted the adhesion of nanoparticles towards bacterial surfaces to promote localized drug release for bacterial killing, where the bacterial damage was visualized through scanning electron microscopy. Enhanced bactericidal activity was demonstrated through this co-delivery of vancomycin and nano-Ag, decreasing the minimum inhibition concentration (MIC) towards E. coli and S. epidermidis down to 15 and 10 µg/mL. This study provides an efficient antimicrobial nano-strategy to address potential bacterial infections.Carbapenemase-producing Gram-negative bacteria have been increasingly reported. Simple and sensitive methods for carbapenemase detection are still needed. In this study, a gold nanoparticle (AuNP) solution was modified by the addition of zinc sulfate (ZnSO4) for improving the conventional GoldNano Carb (cGoldC) test, and the modified GoldC (mGoldC) test was then evaluated for phenotypic detection of carbapenemase production in Gram-negative bacilli clinical isolates. ZnSO4 was added to give final concentrations of 0.25, 0.5, 0.75, and 1 mM. The performance of the mGoldC test was evaluated in Enterobacterales, Acinetobacter spp., and Pseudomonas aeruginosa isolates from six hospitals in different regions using polymerase chain reaction (PCR) as a gold standard. The AuNP solution with 0.25 mM ZnSO4 was used for the mGoldC test. Evaluation of the mGoldC test in 495 Enterobacterales, 212 Acinetobacter spp., and 125 P. aeruginosa isolates (including 444 carbapenemase producers and 388 non-carbapenemase producers) revealed sensitivity, specificity, a positive likelihood ratio, and a negative likelihood ratio of 98.6%, 98.2%, 54.7, and 0.01, respectively. This test is fast, easy to perform, cost-effective (~0.25 USD per test), and highly sensitive and specific for routine carbapenemase detection, thus leading to effective antimicrobial therapy and infection control measures.Methicillin-resistant Staphylococcus aureus (MRSA) is a pathogenic bacterium that causes severe diseases in humans. For decades, MRSA has acquired substantial resistance against conventional antibiotics through regulatory adaptation, thereby posing a challenge for treating MRSA infection. One of the emerging strategies to combat MRSA is the combinatory use of antibacterial agents. ZCL278 Based on the dramatic change in phospholipid fatty acid (PLFA) composition of MRSA in previous results, this study investigated branched-chain amino acid derivatives (precursors of fatty acid synthesis of cell membrane) and discovered the antimicrobial potency of D-norvaline. The compound, which can act synergistically with oxacillin, is among the three leucine-tRNA synthetase inhibitors with high potency to inhibit MRSA cell growth and biofilm formation. PLFA analysis and membrane properties revealed that D-norvaline decreased the overall amount of PLFA, increasing the fluidity and decreasing the hydrophobicity of the bacterial cell membrane. Additionally, we observed genetic differences to explore the response to D-norvaline. Furthermore, deletion mutants and clinically isolated MRSA strains were treated with D-norvaline. The study revealed that D-norvaline, with low concentrations of oxacillin, was effective in killing several MRSA strains. In summary, our findings provide a new combination of aminoacyl-tRNA synthetase inhibitor D-norvaline and oxacillin, which is effective against MRSA.The purpose of this study was to evaluate the defined daily doses (DDD)/1000 prescriptions/month (DPM) as a new indicator that can be used in pharmacies, and to describe antimicrobial use patterns in pharmacies nationwide in Japan. Dispensing volumes, number of prescriptions received, and facility information were obtained from 2638 pharmacies that participated in a survey. DPM was calculated based on the dispensing volume and number of prescriptions, which are routinely collected data that are simple to use. Use of third-generation cephalosporins, quinolones, and macrolides in pharmacies that received prescriptions primarily from hospitals or clinics decreased from January 2019 to January 2021. In particular, the antimicrobial use was higher in otorhinolaryngology departments than in other departments, despite a decrease in the antimicrobial use. In the linear multiple regression analysis, otorhinolaryngology department was independently associated with the third-generation cephalosporin, quinolone, and macrolide prescription in all periods. This study reveals for the first-time trends in antimicrobial use through a new indicator using the volume of drugs dispensed in pharmacies throughout Japan. Antimicrobial use differed by the medical department, suggesting the need to target interventions according to the department type.Thymus capitatus is a Mediterranean endemic plant commonly known as "Zaïtra" in northern Morocco. As T. capitatus is widely used in traditional medicine and food, this present work aims to investigate the chemical compositions and biological activities of the T. capitatus leaves essential oil (TcLEO), acetonic (TcLAE), and methanolic extract (TcLME). The spectrophotometric determination demonstrated that T. capitatus is a natural source rich in phenolic contents (TPC) and flavonoid contents (TFC) and that TcLME revealed the highest TPC and TFC than TcLAE and TcLEO. The LC-MS analysis of phenolic compounds showed that paraben acid was predominant in both TcLME and TcLAE, followed by cinnamic acid and p-hydroxybenzoic acid. GC-MS analysis of the TcLEO revealed the presence of a total of 10 compounds, which were predominated by carvacrol. The antioxidant activity by ORAC was observed to be significantly higher in TcLEO and TcLAE than in TcLME. All samples used to assess DNA degradation effectively prevented DNA oxidation and, at the same time, had a prooxidant effect. The genotoxicity test showed that the T. capitatus were devoid of any mutagenic activity. Concerning antifungal activity, all samples were able to inhibit the growth of all microorganisms tested at low concentrations. TcLAE showed higher activity than TcLME, and in general, dermatophytes were more susceptible, being Microsporum canis the most sensitive one. Overall, the results obtained from this study confirm the wide uses of T. capitatus. Furthermore, the finding results suggest that the T. capitatus essential oil and extracts can be highly useful for pharmaceutical industries.The overuse of antibiotics has resulted in the emergence of antibiotic resistance, not only in bacteria but also in fungi. Streptomyces are known to produce numerous secondary metabolites including clinically useful antibiotics. In this study, we screened for antibiotic-producing actinobacteria from soils in Taipei and discovered a Streptomyces strain SC26 that displayed antimicrobial activities against Gram-positive bacteria and fungi, but the compounds are heat-labile. Upon UV mutagenesis, a late-sporulation mutant SC263 was isolated with the same antibiotic spectrum but increased in thermostability. The nature of the antibiotic is not clear, but its activity was resistant to proteolytic, nucleolytic and pancreatic digestions, and was retained by the 100 kDa membrane during filtration. To gather more information on SC263, the genome was sequenced, which produced three contigs with a total of 8.2 Mb and was assigned to the species of Streptomyces spororaveus based on the average nucleotide identity to the reference species S. spororaveus NBRC 15456.Campylobacter ureolyticus is a Gram-negative, anaerobic, non-spore-forming bacteria that causes gastrointestinal infections. Being the most prevalent cause of bacterial enteritis globally, infection by this bacterium is linked with significant morbidity and mortality in children and immunocompromised patients. No information on pan-therapeutic drug targets for this species is available yet. In the current study, a pan-genome analysis was performed on 13 strains of C. ureolyticus to prioritize potent drug targets from the identified core genome. In total, 26 druggable proteins were identified using subtractive genomics. To the best of the authors' knowledge, this is the first report on the mining of drug targets in C. ureolyticus. UDP-3-O-acyl-N-acetylglucosamine deacetylase (LpxC) was selected as a promiscuous pharmacological target for virtual screening of two bacterial-derived natural product libraries, i.e., postbiotics (n = 78) and streptomycin (n = 737) compounds. LpxC inhibitors from the ZINC database (n = 142 compounds) were also studied with reference to LpxC of C.

Autoři článku: Goodelorentzen8533 (Barefoot Gravesen)