Moorefranklin5263

Z Iurium Wiki

Verze z 22. 9. 2024, 13:38, kterou vytvořil Moorefranklin5263 (diskuse | příspěvky) (Založena nová stránka s textem „We theoretically investigate the atomic-orbital-resolved vortex-shaped photoelectron momentum distributions (PMDs) and ionization probabilities by solving…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

We theoretically investigate the atomic-orbital-resolved vortex-shaped photoelectron momentum distributions (PMDs) and ionization probabilities by solving the two-dimensional time-dependent Schrödinger equation (2D-TDSE) of neon in a pair of delayed counter-rotating circularly polarized attosecond pulses. We found that the number of spiral arms in vortex patterns is twice the number of absorbed photons when the initial state is the ψm=±1 state, which satisfy a change from c2n+2 to c2n (n is the number of absorbed photons) rotational symmetry of the vortices if the 2p state is replaced by 2p+ or 2p- states. For two- and three-photon ionization, the magnetic quantum number dependence of ionization probabilities is quite weak. Interestingly, single-photon ionization is preferred when the electron and laser field corotate and ionization probabilities of 2p- is much larger than that of 2p+ if the proper time delay and wavelength are used. The relative ratio of ionization probabilities between 2p- and 2p+ is insensitive to laser peak intensity, which can be controlled by changing the wavelength, time delay, relative phase and amplitude ratio of two attosecond pulses.Applying in combustion research, Raman scattering technique can provide high accuracy and high precision measurements of temperature and major species concentrations. However detailed knowledge of the temperature dependent Raman spectra of the probed species is a precondition to realise the potential of high precision and accuracy of the technique. As a carbon free novel fuel, the knowledge of high temperature Raman spectra of ammonia is rarely reported. We measured the Raman spectra of ammonia ranging from 299 K to 760 K. The high resolution Raman spectra are excited with a continuous wave 532 nm laser and detected with an low aberration Schmidt-Czerny-Turner spectrometer. The temperature of probe volume was determined by the fitting of N2 Raman spectra. The Raman spectra of ammonia under different temperatures were quantitatively normalized to the same number density to research the temperature behavior of spectra. Within the Raman shift region from 3150 cm-1 to 3810 cm-1, the Raman intensity and the polarization anisotropy of vibrational modes ν1, ν3, and 2ν4 were reported. The relative intensity between ν1, ν3, and 2ν4 modes were also analyzed under different temperatures.We demonstrate high quality (Q) factor microring resonators in high index-contrast GeSbSe chalcogenide glass waveguides using electron-beam lithography followed by plasma dry etching. A microring resonator with a radius of 90 μm shows an intrinsic Q factor of 4.1 × 105 in the telecom band. Thanks to the submicron waveguide dimension, the effective nonlinear coefficient was determined to be up to ∼110 W-1m-1 at 1550 nm, yielding a larger figure-of-merit compared with previously reported submicron chalcogenide waveguides. Such a high Q factor, combined with the large nonlinear coefficient and high confinement, shows the great potential of the GeSbSe microring resonator as a competitive platform in integrated nonlinear photonics.This paper presents a new fringe projection method for surface-shape measurement that uses novel fringe-width encoded fringe patterns. Specifically, the projection patterns are adjusted with the width of the fringe as the codeword. The wrapped phase with coding information is obtained by using the conventional wrapped phase calculation method, and the fringe order can be identified from the wrapped phase. After the fringe order is corrected based on the region growing algorithm, the fringe order and the wrapped phase can be directly used to reconstruct the surface. Static and dynamic measurements demonstrated the ability of the method to perform 3D shape measurement with only three projected patterns, single camera and projector in the least case.We theoretically and experimentally investigate the laser-detected magnetic resonance spectra dressed by a radio-frequency magnetic field in Fg = 4 of D1 line of cesium atoms. The analytical expression of the transmission spectrum for magnetic resonance dressed by a radio-frequency magnetic field is derived and has substantial agreement with the transmission spectra observed in the experiment. The theoretical prediction of the ratio of the amplitudes of the two sidebands with the detuning is basically consistent with the experimental data, which confirms the validity of the analytical expression. The separation between the two sidebands under resonance shows a highly linear proportion to the amplitude of the dressing field, which may provide a useful scheme for the measurement of radio-frequency magnetic field and magnetic imaging.3D time-of-flight (ToF) imaging is used in a variety of applications such as augmented reality (AR), computer interfaces, robotics and autonomous systems. Single-photon avalanche diodes (SPADs) are one of the enabling technologies providing accurate depth data even over long ranges. By developing SPADs in array format with integrated processing combined with pulsed, flood-type illumination, high-speed 3D capture is possible. However, array sizes tend to be relatively small, limiting the lateral resolution of the resulting depth maps and, consequently, the information that can be extracted from the image for applications such as object detection. In this paper, we demonstrate that these limitations can be overcome through the use of convolutional neural networks (CNNs) for high-performance object detection. We present outdoor results from a portable SPAD camera system that outputs 16-bin photon timing histograms with 64×32 spatial resolution, with each histogram containing thousands of photons. The results, obtained with exposure times down to 2 ms (equivalent to 500 FPS) and in signal-to-background (SBR) ratios as low as 0.05, point to the advantages of providing the CNN with full histogram data rather than point clouds alone. Alternatively, a combination of point cloud and active intensity data may be used as input, for a similar level of performance. In either case, the GPU-accelerated processing time is less than 1 ms per frame, leading to an overall latency (image acquisition plus processing) in the millisecond range, making the results relevant for safety-critical computer vision applications which would benefit from faster than human reaction times.The plasmon-phonon hybridization behavior between anisotropic phonon polaritons (APhP) of orthorhombic phase Molybdenum Trioxide (α - MoO3) and the plasmon-polaritons of Graphene layer - forming a van der Waals (vdW) heterostructure is investigated theoretically in this paper. It is found that in-plane APhP shows strong interaction with graphene plasmons lying in their close vicinity, leading to large Rabi splitting. Anisotropic behavior of biaxial MoO3 shows the polarization-dependent response with strong anti-crossing behavior at 0.55 eV and 0.3 eV of graphene's Fermi potential for [100] and [001] crystalline directions, respectively. Numerical results reveal unusual electric field confinement for the two arms of enhanced hybrid modes the first being confined in the graphene layer representing plasmonic-like behavior. https://www.selleckchem.com/products/n-ethylmaleimide-nem.html The second shows volume confined zigzag pattern in hyperbolic MoO3. It is also found that the various plasmon-phonon hybridized modes could be wavelength tuned, simply by varying the Fermi potential of the graphene layer. The coupling response of the hybrid structure is studied analytically using the coupled oscillator model. Furthermore, we also infer upon the coupling strength and frequency splitting between the two layers with respect to their structural parameters and interlayer spacing. Our work will provide an insight into the active tunable property of hybrid van der Waals (vdW) structure for their potential application in sensors, detectors, directional spontaneous emission, as well as for the tunable control of the propagating polaritons in fields of flat dispersion where strong localization of photons can be achieved, popularly known as the flatband optics.A chirped-pulse interleaving method is reported for generation of dual optical frequency combs based on electro-optic phase modulators (EOM) in a free-running all-fiber based system. Methods are discussed to easily modify the linear scan rate and comb resolution by more than three orders of magnitude and to significantly increase the spectral bandwidth coverage. The agility of the technique is shown to both capture complex line shapes and to magnify rapid passage effects in spectroscopic and molecular dynamics studies of CO2. These methods are well-suited for applications in the areas of remote sensing of greenhouse gas emissions, molecular reaction dynamics, and sub-Doppler studies across the wide spectral regions accessible to EOMs.Ultrathin optical limiters are needed to protect light sensitive components in miniaturized optical systems. However, it has proven challenging to achieve a sufficiently low optical limiting threshold. In this work, we theoretically show that an ultrathin optical limiter with low threshold intensity can be realized using a nonlinear zone plate. The zone plate is embedded with nonlinear saturable absorbing materials that allow the device to focus low intensity light, while high intensity light is transmitted as a plane wave without a focal spot. Based on this proposed mechanism, we use the finite-difference time-domain method to computationally design a zone plate embedded with InAs quantum dots as the saturable absorbing material. The device has a thickness of just 0.5 μm and exhibits good optical limiting behavior with a threshold intensity as low as 0.45 kW/cm2, which is several orders of magnitude lower than bulk limiter counterparts based on a similar mechanism, and also performs favorably compared to current ultrathin flat-optics-based optical limiters. This design can be optimized for different operating wavelengths and threshold intensities by using different saturable absorbing materials. Additionally, the diameter and focal length of the nonlinear zone plate can be easily adjusted to fit different systems and applications. Due to its flexible design, low power threshold, and ultrathin thickness, this optical limiting concept may be promising for application in miniaturized optical systems.Atmospheric turbulence can generate scintillation or beam wandering phenomena that impairs free space optical (FSO) communication. In this paper, we propose and demonstrate a proof-of-concept FSO communication receiver based on a spatial demultiplexer and a photonic integrated circuit coherent combiner. The receiver collects the light from several Hermite Gauss spatial modes and coherently combine on chip the energy from the different modes into a single output. The FSO receiver is characterized with a wavefront emulator bench that generates arbitrary phase and intensity patterns. The multimode receiver presents a strong resilience to wavefront distortions, compared to a monomode FSO receiver. The system is then used to detect an analog modulation of an optical beam through a random wavefront profile to mimic the transmission of a signal on a degraded optical link.

Autoři článku: Moorefranklin5263 (Bonde Stern)