Beckermedlin0294
Landslides induced by strong earthquakes often destroy large amounts of landscape vegetation which can trigger significant changes in runoff potential and flood flow. Little is known about hydrological behaviours imposed by co-seismic landslides and their post-earthquake evolution. Therefore, we collected time-series datasets (2007-2018) of underlying surface conditions (USC) changes including landslide expansion and recovery in a watershed affected by the Wenchuan earthquake to further quantify how the large physical disturbance affected the flood hydrological behaviours. The hydrological model HEC-HMS was calibrated and validated to predict the historical hydrological behaviours based on 5 min time-series data in rainfalls and streamflow (2018-2019), showing a good model performance with a mean Nash-Sutcliffe efficiency of 0.76. It was found that, shortly after the earthquake, the sharp expansion with 11% of landslide areas elevated the magnitudes of runoff potential, peak discharge, and runoff volume by >1ies for the unpredictable flash floods triggered by future abrupt natural hazards in earthquake-affected regions.Hydrological connectivity is an essential driver of the stability, structure, and function of wetland ecosystems. Small-scale hydrological connectivity restricts large-scale hydrological cycle processes. TAS-120 cost This study aimed to investigate the response of soil and root properties to hydrological connectivity at the soil profile scale. Tamarix chinensis, which is a typical plant of the Yellow River Delta wetland, was sampled for analysis. We investigated soil and root properties in the three study plots where T. chinensis distributed and compared them at different soil depths and under different hydrological connectivity conditions. We found that the soil organic carbon (SOC), soil organic matter (SOM), and soil total nitrogen (STN) were significantly higher in shallow soil (0-10 cm deep), and that root architecture parameters such as root length and width at soil depth of 0-10 cm were also significantly higher than at other soil depths. Both the soil nutrients and root architecture parameters were significantly influenced by hydrological connectivity. Specifically, SOC, SOM, and STN were significantly higher in regions of high hydrological connectivity than in regions of low hydrological connectivity. link2 Additionally, root length, root surface area, root projected area, and root volume were markedly higher in regions of high hydrological connectivity. Furthermore, root length and width had significant positive correlations with both SOC and SOM in regions of high hydrological connectivity. Taken together, these results indicate that higher hydrological connectivity promotes soil nutrients and root architecture at the soil profile scale. In the process of wetland protection and restoration, we should not only pay attention to hydrological connectivity at a watershed scale, but also to improving hydrological connectivity at smaller scales so as to restore soil nutrients and promote plant growth.Modifying the surface of an anode can improve electroactive bacteria (EAB) enrichment, thereby enhancing the performance of the associated microbial electrochemical systems (MESs). In this study, biosynthetic FeS nanoparticles were used to modify the anode in MESs. The experimental results demonstrated that the stable maximum voltage of the FeS composited biochar (FeS/BC)-modified anode reached 0.72 V, which is 20% higher than that of the control. The maximum power density with the FeS/BC anode was 793 mW/m2, which is 46.31% higher than that obtained with the control (542 mW/m2). According to cyclic voltammetry (CV) analysis, FeS/BC facilitates the direct electron transfer between bacteria and the electrode. The biomass protein concentration of the FeS/BC anode was 841.75 μg/cm2, which is almost 1.5 times higher than that of the carbon cloth anode (344.25 μg/cm2); hence, FeS/BC modification can promote biofilm formation. The composition of Geobacter species on the FeS/BC anode (75.16%) was much higher than that on the carbon cloth anode (4.81%). All the results demonstrated that the use of the biosynthetic FeS/BC anode is an environmentally friendly and efficient strategy for enhancing the electroactive biofilm formation and EAB enrichment in MESs.The widespread occurrence of sulfathiazole (STZ) in the environment has raised concerns regarding the potential risks to ecosystem and human health. Thus, there is a need to develop facile and efficient methods for monitoring STZ. In this study, a novel fluorescent probe, based on N, B, F co-doped carbon dots (N, B, F-CDs), was developed for the highly sensitive and selective determination of STZ. The fluorescent N, B, F-CDs were prepared via a one-step hydrothermal method using malonate and 1-allyl-3-vinylimidazolium tetrafluoroborate ionic liquid as precursors. The obtained N, B, F-CDs exhibited excellent fluorescence response toward STZ due to the inner filter effect (IFE), which caused the fluorescence to be quenched. The fluorescent probe allowed the STZ concentration to be accurately determined with a low detection limit of 5.5 ng mL-1 in two wide linear ranges of 0.008-10 μg mL-1 and 10-45 μg mL-1. The practicability of the fluorescent probe was further validated in river water, soil, milk, and egg samples, and the satisfactory spiked recoveries of STZ ranged from 96.1 to 101.6%. link3 The proposed fluorescent probe based on N, B, F-CDs can be easily prepared and possess high selectivity and sensitivity, thereby displaying its tremendous potential for the identification and determination of STZ in the environment.Manure storage facilities are critical control points to reduce antibiotic resistance genes (ARGs) in swine manure slurry before the slurry is land applied. However, little is known about how exogenous chemicals entering the manure storage facilities may affect the fate of ARGs. The objective of this study was to analyze the impact of six commonly used pit additives and four facility disinfectants on the concentration of ARGs in swine manure slurry. Bench scale reactors, each containing approximately 50 L of liquid swine manure, were dosed with additives or disinfectants and were sampled for 40 days. Seven antibiotic resistance genes along with the intI1 gene and the 16S rRNA gene were monitored. Out of the six additives tested, Sludge Away significantly reduced the time-averaged absolute abundance of erm(C), erm(F), tet(Q), and the 16S rRNA gene as compared to the no additive control. Out of the four disinfectants tested, Tek-Trol significantly reduced the time-averaged absolute abundance of erm(B), erm(C), erm(F), intI1, tet(Q), and tet(X) than did the no-disinfectant control. According to Spearman's rank correlation, three genes erm(F), tet(Q), and tet(X) showed a strong to perfectly positive correlation and the two genes erm(B) and tet(O) showed a moderate to strong correlation in both the additive and disinfectant tests. Overall, the disinfectants were more effective in controlling the absolute abundance of ARGs than were the pit additives.Potentially toxic element (PTE) pollution is considered as the main soil environmental problem in the world. Source apportionment and spatial pattern of soil PTEs are essential for soil management. US-EPA positive matrix factorization (EPAPMF) and sequential Gaussian simulation (SGS) are general modeling tools for source apportionment and spatial distribution, respectively. Factor analysis with nonnegative constraints (FA-NNC) and stochastic partial derivative equations (SPDE) provided potential tools for this issue. We compared the performance of FA-NNC with PMF and the performance of SPDE with SGS, based on a dataset containing 9 PTEs in 285 topsoil samples. Three factors were determined by the two receptor models, and the source contributions were similar, suggesting that FA-NNC can validly identify quantitative sources of soil PTEs. The average source contributions were calculated based on the PMF and FA-NNC. Natural sources dominated the contents of As, Co, Cr, Cu, Ni, and Zn and affected 56.0%, 38.7%, and 84.8% of the Cd, Hg, and Pb concentrations, respectively. A total of 59.8% of Hg and 12.0% of Pb were associated with atmospheric deposition from coal combustion, industrial and traffic emissions, respectively. Agricultural and industrial activities contributed 37.2% of Cd concentration. SPDE proved to be an effective geostatistical technique to simulate the spatial patterns of soil PTEs with higher prediction accuracy than SGS. Co, Cr, Cu, and Ni had similar spatial patterns with hotspots randomly distributed across the study area. The common hotspots of As, Cd, Hg, Pb, and Zn in central parts inherited their high geochemical background in mudstone, while intensive human inputs in these areas also contributed to the accumulation of Cd, Hg, and Pb.Evaluating the impact of climate change factors, especially temperature and carbon dioxide (CO2), on rice yield is essential to ensure future food security. Because of the wide biogeographical distribution of rice, such evaluations are conducted exclusively through modeling efforts. However, geographical forecasts could, potentially, be improved by the inclusion of field-based data on projected increases in temperature and CO2 concentration from a given rice-growing region. In this study, the latest version of the ORYZA (v3) crop model was evaluated with additional yield data obtained from a temperature-controlled free-air CO2 enrichment system (T-FACE) in Southeastern China. ORYZA (v3) results were then evaluated in the context of phase five of the Coupled Model Intercomparison Project (CMIP5) for representative concentration pathways (RCP) 4.5 and RCP 8.5 using five global change models (GCMs). Our findings indicate that climate change, i.e., inclusion of CO2 and temperature effects, decreased mean rice yield by 3.5%, and 9.4% for RCP 4.5; and by 10.5 and 47.9% for RCP 8.5 for the scenarios in the 2050s and 2080s, respectively. The CO2 fertilizer effect partially compensated but did not offset the negative impacts of rising temperature on rice yields. Warmer temperatures were the primary factor that influenced yield by adversely affecting the spikelet fertility factor and spikelet number. Overall, climate change would have positive effects on rice yields until the middle-century in Southeastern China but negative effects were noted by the end of the century. These results may be of interest for informing policy makers and developing appropriate strategies to improve future rice productivity for this region of China.Decoupling water use from economic development is a fundamental strategy to improve environmental quality from the source. It can promote economic growth while reducing water use and water pollution. This article uses water footprint theory to calculate the relevant indicators of the water quantity footprint and water quality footprint of the Northwest arid region between 1997 and 2017. This paper not only comprehensively consider the impact rate of economic development on water resource consumption and water pollution, but also analyzes the coordination of water resource utilization efficiency and economic development from the perspective of water resource flow, and make up for the deficiencies of pure consideration of water resource consumption. The results of the study show that in the past 20 years, the water resources utilization and economic development in Northwest arid region of China has shown relatively decoupling and weak negative decoupling, and the decoupling index of water quantity and water quality with economic development are 0.