Workmanipsen2902

Z Iurium Wiki

Verze z 22. 9. 2024, 13:26, kterou vytvořil Workmanipsen2902 (diskuse | příspěvky) (Založena nová stránka s textem „The cuticle-covered surface forms the interface between plant parts, including fruits, and their environment. The physical and chemical properties of fruit…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The cuticle-covered surface forms the interface between plant parts, including fruits, and their environment. The physical and chemical properties of fruit surfaces profoundly influence plant-frugivore interactions by shaping the susceptibility and suitability of the host for the attacker. Grapevine (Vitis vinifera, Vitaceae) serves as one of the various host plants of the spotted wing drosophila, Drosophila suzukii Matsumura (Diptera Drosophilidae), which is invasive in several parts of the world and can cause major crop losses. The susceptibility of wine towards this pest species differs widely among varieties. The objective of our study was to identify physical and chemical traits of the berry surface that may explain the differences in susceptibility of five grape varieties to D. suzukii. Both preferences of adult D. suzukii and offspring performance on intact versus dewaxed (epicuticular wax layer mechanically removed) grape berries were investigated in dual-choice assays. Moreover, the morphology and chemical composition of cuticular waxes and cutin of the different varieties were analyzed. Bioassays revealed that the epicuticular wax layer of most tested grape varieties influenced the preference behavior of adult flies; even less susceptible varieties became more susceptible after removal of these waxes. In contrast, neither offspring performance nor berry skin firmness were affected by the epicuticular wax layer. The wax morphology and the composition of both epi- and intracuticular waxes differed pronouncedly, especially between more and less susceptible varieties, while cutin was dominated by ω-OH-9/10-epoxy-C18 acid and the amount was comparable among varieties within sampling time. Our results highlight the underestimated role of the epicuticular surface and cuticle integrity in grape susceptibility to D. suzukii.Chloroplast NAD(P)H dehydrogenase (NDH) complex, a multiple-subunit complex in the thylakoid membranes mediating cyclic electron transport, is one of the most important alternative electron transport pathways. It was identified to be essential for plant growth and development during stress periods in recent years. The NDH-mediated cyclic electron transport can restore the over-reduction in stroma, maintaining the balance of the redox system in the electron transfer chain and providing the extra ATP needed for the other biochemical reactions. In this review, we discuss the research history and the subunit composition of NDH. Specifically, the formation and significance of NDH-mediated cyclic electron transport are discussed from the perspective of plant evolution and physiological functionality of NDH facilitating plants' adaptation to environmental stress. A better understanding of the NDH-mediated cyclic electron transport during photosynthesis may offer new approaches to improving crop yield.Centipedegrass [Eremochloa ophiuroides (Munro) Hack.] is a perennial warm-season grass that originated in China, and its speed of nodal rooting is important for lawn establishment. In our study, centipedegrass nodal rooting ability was limited by node aging. Transcriptome sequencing of nodal roots after 0, 2, 4, and 8 days of water culture was performed to investigate the molecular mechanisms of root development. GO enrichment and KEGG pathway analyses of DEGs indicated that plant hormone signal transduction and transcription factors might play important roles in centipedegrass nodal root growth. Among them, E3 ubiquitin-protein ligases participated in multiple hormone signal transduction pathways and interacted with transcription factors. Furthermore, an E3 ubiquitin protein ligase EoSINAT5 overexpressed in rice resulted in longer roots and more numerous root tips, while knockout of LOC_Os07g46560 (the homologous gene of EoSINAT5 in rice) resulted in shorter roots and fewer root tips. These results indicated that EoSINAT5 and its homologous gene are able to promote nodal root development. This research presents the transcriptomic analyses of centipedegrass nodal roots, and may contribute to elucidating the mechanism governing the development of nodal roots and facilitates the use of molecular breeding in improving rooting ability.A strong negative non-linear relationship exists between stomatal density (SD) and size (SS) or length (SL), which is of high importance in gas exchange and plant evolution. However, the cause of this relationship has not been clarified. In geometry, SD has an intrinsic relationship with SS-1 or SL-2, which is defined as a geometric constraint here. We compiled global data to clarify the influence of this geometric constraint on the SD-SS relationship. The log-log scaling slope of the relationship between SD and SS and between SD and SL was not significantly different from -1 and -2, respectively. Although the non-geometric effect drove the SD-SS curve away from the power function with -1, a larger influence of the geometric constraint on SD was found. Therefore, the higher geometric constraint possibly causes the SD-SS relationship to be inevitably non-linear and negative. TH5427 Compared to pteridophyta and gymnosperms, the geometric constraint was lower for angiosperm species, possibly due to most of them having smaller stomata. The relaxation of the geometric constraint seems to extend the upper range of SD in angiosperm species and hence enable them to exploit a wide range of environments.Differently from the common monocentric organization of eukaryotic chromosomes, the so-called holocentric chromosomes present many centromeric regions along their length. This chromosomal organization can be found in animal and plant lineages, whose distribution suggests that it has evolved independently several times. Holocentric chromosomes present an advantage even broken chromosome parts can be correctly segregated upon cell division. However, the evolution of holocentricity brought about consequences to nuclear processes and several adaptations are necessary to cope with this new organization. Centromeres of monocentric chromosomes are involved in a two-step cohesion release during meiosis. To deal with that holocentric lineages developed different adaptations, like the chromosome remodeling strategy in Caenorhabditis elegans or the inverted meiosis in plants. Furthermore, the frequency of recombination at or around centromeres is normally very low and the presence of centromeric regions throughout the entire length of the chromosomes could potentially pose a problem for recombination in holocentric organisms.

Autoři článku: Workmanipsen2902 (Voss Egeberg)