Allisonberger5546

Z Iurium Wiki

Verze z 22. 9. 2024, 05:43, kterou vytvořil Allisonberger5546 (diskuse | příspěvky) (Založena nová stránka s textem „According to theories on cave adaptation, cave organisms are expected to develop a lower metabolic rate compared to surface organisms as an adaptation to f…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

According to theories on cave adaptation, cave organisms are expected to develop a lower metabolic rate compared to surface organisms as an adaptation to food scarcity in the subterranean environments. To test this hypothesis, we compared the oxygen consumption rates of the surface and subterranean populations of a surface-dwelling species, the newt Calotriton asper, occasionally found in caves. In this study, we designed a new experimental setup in which animals with free movement were monitored for several days in a respirometer. First, we measured the metabolic rates of individuals from the surface and subterranean populations, both maintained for eight years in captivity in a natural cave. We then tested individuals from these populations immediately after they were caught and one year later while being maintained in the cave. We found that the surface individuals that acclimated to the cave significantly reduced their oxygen consumption, whereas individuals from the subterranean population maintained in the cave under a light/dark cycle did not significantly modify their metabolic rates. Second, we compared these metabolic rates to those of an obligate subterranean salamander (Proteus anguinus), a surface aquatic Urodel (Ambystoma mexicanum), and a fish species (Gobio occitaniae) as references for surface organisms from different phyla. As predicted, we found differences between the subterranean and surface species, and the metabolic rates of surface and subterranean C. asper populations were between those of the obligate subterranean and surface species. These results suggest that the plasticity of the metabolism observed in surface C. asper was neither directly due to food availability in our experiments nor the light/dark conditions, but due to static temperatures. Moreover, we suggest that this adjustment of the metabolic level at a temperature close to the thermal optimum may further allow individual species to cope with the food limitations of the subterranean environment.Bird assemblages are sensitive to changes in landscape composition and the environment, such as those that result from drought. In this study, the relationship between landscape composition and avian functional diversity in traditional agricultural ecosystems in the Civilian Control Zone (CCZ) of Korea was examined. In addition, the resilience of biodiversity to changes in landscape elements resulting from drought conditions was investigated. The traditional agricultural landscape (TAL) of the sites studied was divided into three types TAL 1 had a high proportion of rice paddies, TAL 2 included large forest areas, and TAL 3 represented areas with drylands. Of these, TAL 1 showed the highest species richness and functional richness, but these measures were most vulnerable to drought. Meanwhile, TAL 2 showed that the bird communities were more tolerant under drought event. This study shows that to conserve and enhance the diversity of birds in traditional agricultural landscapes of Northeast Asia, active management of forest areas is needed to protect bird populations. In addition, commercial pressures to develop this area will require urgent biodiversity conservation plans to protect the unique biodiversity of the Korean CCZ. This study thus provides landscape management guidance for conservation planning.

Coffee is an important export for many developing countries, with a global annual trade value of $100 billion, but it is threatened by a warming climate. Shade trees may mitigate the effects of climate change through temperature regulation that can aid in coffee growth, slow pest reproduction, and sustain avian insectivore diversity. The impact of shade on bird diversity and microclimate on coffee farms has been studied extensively in the Neotropics, but there is a dearth of research in the Paleotropics.

East Africa.

We created current and future regional Maxent models for avian insectivores in East Africa using Worldclim temperature data and observations from the Global Biodiversity Information Database. We then adjusted current and future bioclimatic layers based on mean differences in temperature between shade and sun coffee farms and projected the models using these adjusted layers to predict the impact of shade tree removal on climatic suitability for avian insectivores.

Existing Worldclim temperme a regionally limiting factor for bird distribution in East Africa, which could negatively impact control of coffee pests, but the effect of climate change can be potentially mediated through planting and maintaining shade trees on coffee farms.Investigating the range and population dynamics of introduced species provides insight into species behavior, habitat preferences, and potential of becoming established. Here, we show the current population status of the red-necked wallaby (Notamacropus rufogriseus) in Britain based on records from an eleven-year period (2008-2018). Records were obtained from Local Environmental Records Centres (LERCs), the National Biodiversity Network (NBN), and popular media. All records were mapped and compared to a historical distribution map (1940-2007), derived from published data. A total of 95 confirmed wallaby sightings were recorded between 2008 and 2018, of which 64 came from media sources, 18 from Local Environmental Records Centres (LERCs), seven from the National Biodiversity Network (NBN), and six from the published literature (Yalden, Br. Wildl., 24, 2013, 169). The greatest density of wallaby sightings was in southern England, with the Chiltern Hills Area of Outstanding Natural Beauty a particular hot spot (n = 11). More sightings were recorded in August than in any other month. Much of the species' ecology and responses to British biota and anthropogenic pressures are unknown, and therefore, further research is warranted. The methods used here are widely applicable to other non-native species, particularly those that the public are more likely to report and could be an important supplement to existing studies of conservation and management relevance.Huanglongbing (HLB) is the most devastating citrus disease worldwide. The organism associated with the disease is spread by an insect vector, Diaphorina citri, commonly known as Asian citrus psyllid (ACP). check details Current management of HLB relies either on physical removal of the infected plants or on chemical control of ACP. Both methods are costly and not overly effective. In addition, public concerns regarding insecticide residues in fruit have greatly increased in recent years. It has been hypothesized that plant volatiles could act as repellents to ACP, thus reduce the incidence of HLB. To test this hypothesis, the repellency of fresh tissues of 41 aromatic plant species to ACP was investigated. The repellency of individual species was determined using a Y-tube olfactometer. Our results showed that volatiles of five plant species were highly effective in repelling ACP with repellency as much as 76%. Among these, the tree species, Camptotheca acuminate, and the two shrubs, Lantana camara and Mimosa bimucronata, could potentially be planted as a landscape barrier. The two herbs, Capsicum annuum and Gynura bicolor, could potentially be used as interplantings in orchards. This is the first time that the repellency of fresh tissues from a diverse range of plant species to ACP has been determined. Although further field evaluation of various interplanting regimes and landscape barriers are needed to assess their effectiveness, our results showed that these aromatic species, being highly repellent to ACP, offer great potential as more cost-effective and environmentally sustainable alternatives to the current methods of managing HLB.Survival of endangered Himalayan red panda is threatened by ever-growing anthropogenic activities leading to an unprecedented rate of habitat degradation and loss. However, limited studies have been conducted in the context of the spatial distribution of habitats and habitat connectivity for the species in the landscape of Sakteng Wildlife Sanctuary (SWS). Lack of such information remains a challenge while implementing effective and holistic conservation initiatives. Therefore, this study identifies the distribution of potential habitats and their connectivity using maxent and linkage mapper, respectively. Precipitation-related predictor variables exhibited a significant influence on the prediction of habitat distribution. The model predicted 27.7% of the SWS as a potential habitat (fundamental niche). More than 75% of the predicted habitats fall outside the existing core zones where anthropogenic disturbance is relatively high, indicating the need to reassess existing management options. In SWS, 15 core habis.Despite the importance of mammal-fungal interactions, tools to estimate the mammal-assisted dispersal distances of fungi are lacking. Many mammals actively consume fungal fruiting bodies, the spores of which remain viable after passage through their digestive tract. Many of these fungi form symbiotic relationships with trees and provide an array of other key ecosystem functions. We present a flexible, general model to predict the distance a mycophagous mammal would disperse fungal spores. We modeled the probability of spore dispersal by combining animal movement data from GPS telemetry with data on spore gut-retention time. We test this model using an exemplar generalist mycophagist, the swamp wallaby (Wallabia bicolor). We show that swamp wallabies disperse fungal spores hundreds of meters-and occasionally up to 1,265 m-from the point of consumption, distances that are ecologically significant for many mycorrhizal fungi. In addition to highlighting the ecological importance of swamp wallabies as dispersers of mycorrhizal fungi in eastern Australia, our simple modeling approach provides a novel and effective way of empirically describing spore dispersal by a mycophagous animal. This approach is applicable to the study of other animal-fungi interactions in other ecosystems.Most herbivorous insects are diet specialists in spite of the apparent advantages of being a generalist. This conundrum might be explained by fitness trade-offs on alternative host plants, yet the evidence of such trade-offs has been elusive. Another hypothesis is that specialization is nonadaptive, evolving through neutral population-genetic processes and within the bounds of historical constraints. Here, we report on a striking lack of evidence for the adaptiveness of specificity in tropical canopy communities of armored scale insects. We find evidence of pervasive diet specialization, and find that host use is phylogenetically conservative, but also find that more-specialized species occur on fewer of their potential hosts than do less-specialized species, and are no more abundant where they do occur. Of course local communities might not reflect regional diversity patterns. But based on our samples, comprising hundreds of species of hosts and armored scale insects at two widely separated sites, more-specialized species do not appear to outperform more generalist species.Long-term multigenerational experimental simulations of climate change on insect pests of economically and socially important crops are crucial to anticipate challenges for feeding humanity in the not-so-far future. Mexican bean weevil Zabrotes subfasciatus, is a worldwide pest that attacks the common bean Phaseolus vulgaris seeds, in crops and storage. We designed a long term (i.e., over 10 generations), experimental simulation of climate change by increasing temperature and CO2 air concentration in controlled conditions according to model predictions for 2100. Higher temperature and CO2 concentrations favored pest's egg-to-adult development survival, even at high female fecundity. It also induced a reduction of fat storage and increase of protein content but did not alter body size. After 10 generations of simulation, genetic adaptation was detected for total lipid content only, however, other traits showed signs of such process. Future experimental designs and methods similar to ours, are key for studying long-term effects of climate change through multigenerational experimental designs.

Autoři článku: Allisonberger5546 (Washington Harboe)