Quinlanlinnet0245
edback may be limiting muscle mass expansion in obesity.Achromobacter aegrifaciens NCCB 38021 was grown heterotrophically on succinate versus exochemolithoheterotrophically on succinate with thiosulfate as auxiliary electron donor. In batch culture, no significant differences in specific molar growth yield or specific growth rate were found for the two growth conditions, but in continuous culture in the succinate-limited chemostat, the maximum specific growth yield coefficient increased by 23.3% with thiosulfate present, consistent with previous studies of endo- and exochemolithoheterotrophs and thermodynamic predictions. Thiosulfate oxidation was coupled to respiration at cytochrome c551, and thiosulfate-dependent ATP biosynthesis occurred. Specific activities of cytochrome c-linked thiosulfate dehydrogenase (E.C. 1.8.2.2) and two other enzymes of sulfur metabolism were significantly higher in exochemolithoheterotrophically grown cell extracts, while those of succinyl-transferring 2-oxoglutarate dehydrogenase (E.C. RHO-15 1.2.4.2), fumarate hydratase (E.C. 4.2.1.2) and malate dehydrogenase (NAD+, E.C. 1.1.1.37) were significantly lower-presumably owing to less need to generate reducing equivalents during Krebs' cycle, since they could be produced from thiosulfate oxidation.RNA viruses, in general, exhibit high mutation rates; this is mainly due to the low fidelity displayed by the RNA-dependent polymerases required for their replication that lack the proofreading machinery to correct misincorporated nucleotides and produce high mutation rates. This lack of replication fidelity, together with the fact that RNA viruses can undergo spontaneous mutations, results in genetic variants displaying different viral morphogenesis, as well as variation on their surface glycoproteins that affect viral antigenicity. This diverse viral population, routinely containing a variety of mutants, is known as a viral 'quasispecies'. The mutability of their virions allows for fast evolution of RNA viruses that develop antiviral resistance and overcome vaccines much more rapidly than DNA viruses. This also translates into the fact that pathogenic RNA viruses, that cause many diseases and deaths in humans, represent the major viral group involved in zoonotic disease transmission, and are responsible for worldwide pandemics.
Fatty acid esters of hydroxy fatty acids (FAHFAs) are a large family of endogenous bioactive lipids. To date, most of the studied FAHFAs are branched regioisomers of Palmitic Acid Hydroxyl Stearic Acid (PAHSA) that were reported to possess anti-diabetic and anti-inflammatory activity in humans and rodents. Recently, we have demonstrated that 9-PAHPA or 9-OAHPA intake increased basal metabolism and enhanced insulin sensitivity in healthy control diet-fed mice but induced liver damage in some mice. The present work aims to explore whether a long-term intake of 9-PAHPA or 9-OAHPA may have similar effects in obesogenic diet-fed mice.
C57Bl6 mice were fed with a control or high fat-high sugar (HFHS) diets for 12 weeks. The HFHS diet was supplemented or not with 9-PAHPA or 9-OAHPA. Whole-body metabolism was explored. Glucose and lipid metabolism as well as mitochondrial activity and oxidative stress status were analyzed.
As expected, the intake of HFHS diet led to obesity and lower insulin sensitivity with minor effects on liver parameters. The long-term intake of 9-PAHPA or 9-OAHPA modulated favorably the basal metabolism and improved insulin sensitivity as measured by insulin tolerance test. On the contrary to what we have reported previously in healthy mice, no markedeffect for these FAHFAs was observed on liver metabolism of obese diabetic mice.
This study indicates that both 9-PAHPA and 9-OAHPA may have interesting insulin-sensitizing effects in obese mice with lower insulin sensitivity.
This study indicates that both 9-PAHPA and 9-OAHPA may have interesting insulin-sensitizing effects in obese mice with lower insulin sensitivity.The dimorphism among male, female and freemartin intersex bovines, focusing on the vermal lobules VIII and IX, was analyzed using a novel data analytics approach to quantify morphometric differences in the cytoarchitecture of digitalized sections of the cerebellum. This methodology consists of multivariate and multi-aspect testing for cytoarchitecture-ranking, based on neuronal cell complexity among populations defined by factors, such as sex, age or pathology. In this context, we computed a set of shape descriptors of the neural cell morphology, categorized them into three domains named size, regularity and density, respectively. The output and results of our methodology are multivariate in nature, allowing an in-depth analysis of the cytoarchitectonic organization and morphology of cells. Interestingly, the Purkinje neurons and the underlying granule cells revealed the same morphological pattern female possessed larger, denser and more irregular neurons than males. In the Freemartin, Purkinje neurons showed an intermediate setting between males and females, while the granule cells were the largest, most regular and dense. This methodology could be a powerful instrument to carry out morphometric analysis providing robust bases for objective tissue screening, especially in the field of neurodegenerative pathologies.Zoledronic acid could improve the clinical outcome in elderly patients receiving total hip arthroplasty or hemiarthroplasty for osteoporotic femoral neck fracture in the 1-year prospective study.
To validate the therapeutic efficacy of zoledronic acid (ZOL) in elderly patients with femoral neck fracture who received total hip arthroplasty (THA) or hemiarthroplasty (HA).
Included in this study were 95 elderly patients with femoral neck fractures who received THA/HA between August 2015 and June 2018. They were randomized into a ZOL group and a control group. Patients in ZOL group received a yearly single dose of 5mg ZOL intravenous injection plus 0.5μg/day calcitriol and 1000mg/day calcium carbonate 2days before THA or HA. Patients in the control group were treated with the same dose of calcitriol and calcium carbonate only without ZOL. Bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry. Bone metabolism markers including the total extension of the peptide type I collagen amino end (P1NP) and beta collagen degradation product (β-CTX) were obtained by serum examination.