Frasersolomon1960

Z Iurium Wiki

Verze z 22. 9. 2024, 01:51, kterou vytvořil Frasersolomon1960 (diskuse | příspěvky) (Založena nová stránka s textem „This method provides a route for the resource utilization of spent LIBs and the synthesis of MnO2.Adsorption is an important technology to deal with volati…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

This method provides a route for the resource utilization of spent LIBs and the synthesis of MnO2.Adsorption is an important technology to deal with volatile organic compounds (VOCs), and biochar has attracted much attention as a new type of adsorbent for VOCs. In this study, rice husk, corn stover and pine wood sawdust biochars from different pyrolysis temperatures (300 °C, 500 °C and 700 °C) were synthesized and treated by ball milling. The pristine and ball-milled biochars were used as adsorbents for acetone and toluene removal. Results showed that wood biochar had higher adsorption capacity for VOCs. After ball milling, the BET specific surface area and the oxygen functional group content of biochars increased. With these changes, all the ball-milled biochars showed higher adsorption rate than the pristine biochars. The ball-milled biochars under pyrolysis temperature of 300 °C showed the best adsorption performance for acetone (304 mg g-1), which was 1.7-fold greater than that of pristine biochar. Increasing the surface area by ball milling is conducive to the diffusion of hydrophobic VOCs molecules such as toluene to the adsorption sites in the biochar. However, for hydrophilic VOCs such as acetone, higher oxygen functional groups were the main reason for the enhanced adsorption by ball milling. Therefore, ball-milled biochar can be used as a potential adsorbent material in VOCs treatment.Integrated-remediation technologies on heavy metal polluted sediments have received much attention. In this study, Cd contaminated sediments were treated with various conditions sulfate reducing bacteria (SRB) only and SRB combined with different dosages of nano zero valent iron (nZVI (0.5-10 mg/g)). The immobilization of Cd was found in all remediation treatments according to the decreases of mobile Cd and the increases of more stable Cd compared with control. Five typical SRBs (Desulfobulbaceae, Desulfobacteraceae, Syntrophobacteraceae, Desulfovibrionaceae and Desulfomicrobiaceae) were identified having significant influences on Cd speciation transformation and they could stabilize Cd into sulfide precipitation through dissimilatory sulfate reduction (DSR). The ANOVA results of mobilization index and Cd concentration in overlying water both demonstrated that integrated-remediation systems with 5 mg/g and 10 mg/g of nZVI (Fe5 and Fe10 systems, respectively) presented better immobilization performance than conventional SRB only system (P less then 0.05). It is confirmed that nZVI could stimulate the SRB bio-immobilization possibily through providing electrons and enhancing enzyme activities during DSR. The XPS analyses and Pourbaix diagrams revealed that mackinawite may be produced in the Fe10, resulting in the possible formation of Cd-S-Fe. This study indicates that integrated-remediation of SRB and nZVI have great potential in Cd immobilization of sediments, especially with higher addition of nZVI.Aromatic organoarsenicals are widely used in animal feeding operations and cause arsenic contamination on livestock wastewater and manure, thereby raising the risk of surface water pollution. Biological wastewater treatment processes are often used for livestock wastewater treatment. Organoarsenic removal and biotransformation under aerobic and anaerobic conditions, and the associated impacts have received extensive attention due to the potential threat to water security. The removal efficiency and biotransformation of organoarsenicals in biological treatment processes are reviewed. The underlying mechanisms are discussed in terms of functional microorganisms and genes. The impacts associated with organoarsenicals and their degradation products on microbial activity and performance of bioreactors are also documented. Based on the current research advancement, knowledge gaps and potential research in this field are discussed. Overall, this work delivers a comprehensive understanding on organoarsenic behaviors in biological wastewater treatment processes, and provides valuable information on the control of arsenic contamination from the degradation of organoarsenicals in biological wastewater treatment processes.This study aimed to investigate whether genotoxic stress mediates arsenic (As)-induced decline in sperm quality. Mice drank ultrapure water containing NaAsO2 (15 mg/L) for 70 days. The mature seminiferous tubules and epididymal sperm count were reduced in As-exposed mice. Cell proliferation, determined by immunostaining with Ki67, was suppressed in As-exposed seminiferous tubules and GC-1 cells. PCNA, a proliferation marker, was reduced in As-exposed mouse testes. Cell growth index was decreased in As-exposed GC-1 cells. Flow analysis showed that As-exposed GC-1 cells were retarded at G2/M phase. CDK1 and cyclin B1 were reduced in As-exposed GC-1 cells and mouse testes. Additional experiment revealed that p-ATR, a marker of genotoxic stress, was elevated in As-exposed mouse testes and GC-1 cells. Accordingly, p-p53 and p21, two downstream molecules of ATR, were increased in As-exposed GC-1 cells. Excess reactive oxygen species (ROS), measured by immunofluorescence, and DNA-strand break, determined by Comet assay, were observed in As-exposed GC-1 cells. γH2AX, a marker of DNA-strand break, was elevated in As-exposed seminiferous tubules and GC-1 cells. NAC alleviated As-evoked DNA damage, genotoxic stress, cell proliferation inhibition and sperm count reduction. In conclusion, ROS-evoked genotoxic stress mediates As-induced germ cell proliferation inhibition and decline in sperm quality.The low efficiency of peroxone (O3/H2O2) at acidic and neutral pH restrained its application in water purification. To overcome this shortcoming, CeOX@SiO2 with large surface area, abundant surface oxygen vacancies (Vo), Lewis sites (L sites) and high Ce(III)/Ce(IV) ratio were synthesized to change the traditional electron transfer pathway between O3 and H2O2. Vo was facile in absorbing H2O2 to form Vo-H2O2 and L sites were capable of absorbing O3 to form L-O3. The electron at Vo could be donated to Vo-H2O2 and generate Vo-HO2-, which then effectively triggered the decomposition of L-O3 at CeOX@SiO2's interface and O3 in bulk solution. The electron transfer at the solid-liquid interface with the help of Ce3+/Ce4+ redox cycle and Vo was pH independent and different from the traditional electron transfer of peroxone reaction. selleck chemicals Nitrobenzene (NB) mineralization was promoted to 92.5% in CeOX@SiO2-peroxone, but only 63.8% TOC was removed in tradition peroxone process. Moreover, CeOX@SiO2-peroxone had a wide pH application range. NB's degradation in CeOX@SiO2-peroxone process followed the co-oxidation mechanism of superoxide free (•O2-) and hydroxyl radical (•OH). The finding of this study could broaden the popularization of peroxone in water treatment and provided a strategy for catalyst design.Organophosphate flame retardants (OPFRs) are substantially applied as flame retardants and plasticizers in consumer products. Although the embryonic developmental toxicity of OPFRs has been reported, human data are limited and the critical windows of susceptibility to OPFRs exposure urgently need to be identified. Here, we investigated the trimester-specific associations between prenatal OPFR exposure and birth size for the first time. The concentrations of 15 OPFR metabolites and tris(2-chloroethyl) phosphate were repeatedly determined in urine samples of 213 pregnant women collected in the first, second, and third trimesters in Wuhan, China, and anthropometric data were retrieved from medical records. In multiple informant models, urinary concentrations of bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) and bis(2-butoxyethyl) phosphate (BBOEP) in the third trimester, 4-hydroxyphenyl-diphenyl phosphate (4-HO-DPHP) in the second trimester, and diphenyl phosphate (DPHP) in the first trimester were negatively associated with birth weight, among which a significant difference in exposure-effect relationships across the three trimesters was observed for BDCIPP. BBOEP concentrations in the third trimester were negatively correlated to birth length with significant varying exposure effects. Our results suggest that prenatal exposure to certain OPFRs may impair fetal growth, and the fetus is vulnerable to the developmental toxicity of BDCIPP and BBOEP in the third trimester.In this study, we have rationally designed and grafted a bio-assisted 2D/2D TiO2/MIL-88(Fe) (TCS@MOF) heterojunction by growing granular TiO2 on the surface of MIL-88(Fe) nanosheet, as hybrid photocatalyst. The hierarchical TCS@MOF composite was prepared via the one-pot solvothermal process and employed for monocrotophos (MCP) degradation under visible light region, since its persistent nature on soil and water causes major threat to the environment. The TCS@MOF promotes a number of packed high-speed nano-tunnels in the (p-n) heterojunctions, which significantly enhance the migration of photo-induced electrons (e-) and holes (h+), respectively and thus limits the charge recombination of e-s. The optimized photocatalyst achieves significant catalytic activity of ~98.79% for the degradation of MCP within 30 min of irradiation. The prominent oxidative radicals namely •OH, •O2- etc., were involved in the oxidation of organic pesticide. Besides, TCS@MOF exhibits outstanding stability even after five repetitive cycles for the oxidation of MCP with a negligible decrease in photo-activity. The proposed mechanism and oxidative pathways of MCP were rationally deduced in detail subject to experimental results. The mechanism renders insight into the oxidation and consequent bond rupture of pollutant as well as into the formation of products such as H2O, CO2, etc. This report unveils a novel architecture of proficiently optimized TCS@MOF material structure for the perceptive oxidation of organic contaminants.Active site engineering is of significant importance for developing high activity metal-organic frameworks (MOFs) for catalytic applications. Herein, we develop a one-pot strategy to construct bimetal organic frameworks with Fe-Co dual sites for Fenton-like catalysis. Density functional theory (DFT) demonstrated that the introducing Co heteroatoms into MIL-101(Fe) (MIL represents Matérial Institute Lavoisier) was favorable for the formation of electron-deficient centers around benzene rings and electron-rich centers around Fe/Co. This synergistic effect could effectively decrease the energy barrier of H2O2 activation. Due to the facilitated charge transfer in the coordinated structures, MIL-101(Fe,Co) with engineered dual sites exhibited exceptionally high efficiency for the degradation of ciprofloxacin (CIP). The reaction rate of MIL-101(Fe,Co)/H2O2 system was 0.12 min-1, which was nearly 7.5 times higher than that of pristine MIL-101(Fe). The reaction mechanism of heterogeneous Fenton-like catalysis was fundamentally investigated by series of in-situ techniques, such as DRIFTS and Raman. ·OH radicals generated by H2O2 activation endowed the inspiring ability of MIL-101(Fe,Co) for water decontamination. This work offers a facile principle of exploring MOFs-based Fenton-like catalysts with a wide working pH range for environmental applications.

Autoři článku: Frasersolomon1960 (Mcbride Livingston)