Douglassmidt6311
Syntrophic bacteria play a key role in the anaerobic conversion of biological matter to methane. They convert short-chain fatty acids or alcohols to H2, formate, and acetate that serve as substrates for methanogenic archaea. Many syntrophic bacteria can also grow with unsaturated fatty acids such as crotonate without a syntrophic partner, and the reducing equivalents derived from the oxidation of one crotonate to two acetate are regenerated by the reduction of a second crotonate. However, it has remained unresolved how the oxidative and reductive catabolic branches are interconnected and how energy may be conserved in the reductive branch. Here, we provide evidence that during axenic growth of the syntrophic model organism Syntrophus aciditrophicus with crotonate, the NAD+-dependent oxidation of 3-hydroxybutyryl-CoA to acetoacetyl-CoA is coupled to the reduction of crotonyl-CoA via formate cycling. In this process, the intracellular formate generated by a NAD+-regenerating CO2 reductase is taken up by a peripby, the reducing equivalents generated during the oxidation of one crotonate to two acetate are regenerated by reduction of a second crotonate to butyrate. Here, we show that the oxidative and reductive branches of this pathway are connected via formate cycling involving an energy-conserving redox-loop. We refer to this previously unknown type of energy metabolism as to enoyl-CoA respiration with acyl-CoA dehydrogenases serving as cytoplasmic terminal reductases.As an enveloped virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains a membrane protein (M) that mediates viral release from cellular membranes. However, the molecular mechanisms of SARS-CoV-2 virion release remain poorly understood. In the present study, we performed RNA interference (RNAi) screening and identified the E3 ligase RNF5, which mediates the ubiquitination of SARS-CoV-2 M at residue K15 to enhance the interaction of the viral envelope protein (E) with M, whereas the deubiquitinating enzyme POH1 negatively regulates this process. The M-E complex ensures the uniform size of viral particles for viral maturation and mediates virion release. Moreover, M traffics from the Golgi apparatus to autophagosomes and uses autophagosomes for virion release, and this process is dependent on RNF5-mediated ubiquitin modification and M-E interaction. These results demonstrate that ubiquitin modification of SARS-CoV-2 M stabilizes the M-E complex and uses autophagosomes for virion release. IMPORTANCE Enveloped virus particles are released from the membranes of host cells, and viral membrane proteins (M) are critical for this process. A better understanding of the molecular mechanisms of SARS-CoV-2 assembly and budding is critical for the development of antiviral therapies. Envelope protein (E) and M of SARS-CoV-2 form complexes to mediate viral assembly and budding. RNF5 was identified to play a role as the E3 ligase, and POH1 was demonstrated to function as the deubiquitinating enzyme of SARS-CoV-2 M. The two components collectively regulate the interaction of M with E to promote viral assembly and budding. Ubiquitinated M uses autophagosomes for viral release. Our findings provide insights into the mechanisms of SARS-CoV-2 assembly and budding, demonstrating the importance of ubiquitination modification and autophagy in viral replication.Excessive inflammation can cause tissue damage and autoimmunity, sometimes accompanied by severe morbidity or mortality. Numerous negative feedback mechanisms exist to prevent unchecked inflammation, but this restraint may come at the cost of suboptimal infection control. Regnase-1 (MCPIP1), a feedback regulator of IL-17 and LPS signaling, binds and degrades target mRNAs. Consequently, Reg1 deficiency exacerbates autoimmunity in multiple models. However, the role of Reg1 in bacterial immunity remains poorly defined. Here, we show that mice deficient in Reg1 are resistant to Klebsiella pneumoniae (KP). Reg1 deficiency did not accelerate bacterial eradication. Rather, Reg1-deficient alveolar macrophages had elevated Ifnb1 and enrichment of type I IFN genes. Blockade of IFNR during KP infection reversed disease improvement. Reg1 did not impact Ifnb1 stability directly, but Irf7 expression was affected. Thus, Reg1 suppresses type I IFN signaling restricting resistance to KP, suggesting that Reg1 could potentiallyReg1 could potentially be exploited to improve host defense during infectious settings such as KP.Pyrazinamide (PZA) plays a crucial role in first-line tuberculosis drug therapy. Unlike other antimicrobial agents, PZA is active against Mycobacterium tuberculosis only at low pH. The basis for this conditional drug susceptibility remains undefined. In this study, we utilized a genome-wide approach to interrogate potentiation of PZA action. https://www.selleckchem.com/products/esi-09.html We found that mutations in numerous genes involved in central metabolism as well as cell envelope maintenance and stress response are associated with PZA resistance. Further, we demonstrate that constitutive activation of the cell envelope stress response can drive PZA susceptibility independent of environmental pH. Consequently, exposure to peptidoglycan synthesis inhibitors, such as beta-lactams and d-cycloserine, potentiate PZA action through triggering this response. These findings illuminate a regulatory mechanism for conditional PZA susceptibility and reveal new avenues for enhancing potency of this important drug through targeting activation of the cell envelope strculosis.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide since December 2019, causing coronavirus disease 2019 (COVID-19). Although vaccines for this virus have been developed rapidly, repurposing drugs approved to treat other diseases remains an invaluable treatment strategy. Here, we evaluated the inhibitory effects of drugs on SARS-CoV-2 replication in a hamster infection model and in in vitro assays. Favipiravir significantly suppressed virus replication in hamster lungs. Remdesivir inhibited virus replication in vitro, but was not effective in the hamster model. However, GS-441524, a metabolite of remdesivir, effectively suppressed virus replication in hamsters. Co-administration of favipiravir and GS-441524 more efficiently reduced virus load in hamster lungs than did single administration of either drug for both the prophylactic and therapeutic regimens; prophylactic co-administration also efficiently inhibited lung inflammation in the infected animals. Furthermore, pretreatmeno-administration of antivirals to combat future pandemics.Pyroptosis, a programmed cell death, functions as an innate immune effector mechanism and plays a crucial role against microbial invasion. Gasdermin D (GSDMD), as the main pyroptosis effector, mediates pyroptosis and promotes releasing proinflammatory molecules into the extracellular environment through pore-forming activity, modifying inflammation and immune responses. While the substantial importance of GSDMD in microbial infection and cancer has been widely investigated, the role of GSDMD in virus infection, including coronaviruses, remains unclear. Enteric coronavirus transmissible gastroenteritis virus (TGEV) and porcine deltacoronavirus (PDCoV) are the major agents for lethal watery diarrhea in neonatal pigs and pose the potential for spillover from pigs to humans. In this study, we found that alphacoronavirus TGEV upregulated and activated GSDMD, resulting in pyroptosis after infection. Furthermore, the fragment of swine GSDMD from amino acids 242 to 279 (242-279 fragment) was required to induce pyroptroptosis and upregulated GSDMD expression, while GSDMD broadly suppressed the infection of enteric coronavirus TGEV and PDCoV by its pore-forming activity via promoting unconventional release of IFN-β. Our study highlights the importance of GSDMD as a regulator of innate immunity and may open new avenues for treating coronavirus infection.Antibiotic resistance among bacterial pathogens continues to pose a serious global health threat. Multidrug-resistant (MDR) strains of the Gram-negative organism Acinetobacter baumannii utilize a number of resistance determinants to evade current antibiotics. One of the major resistance mechanisms employed by these pathogens is the use of multidrug efflux pumps. These pumps extrude xenobiotics directly out of bacterial cells, resulting in treatment failures when common antibiotics are administered. Here, the structure of the novel tetracycline antibiotic TP-6076, bound to both the Acinetobacter drug efflux pump AdeJ and the ribosome from Acinetobacter baumannii, using single-particle cryo-electron microscopy (cryo-EM), is elucidated. In this work, the structure of the AdeJ-TP-6076 complex is solved, and we show that AdeJ utilizes a network of hydrophobic interactions to recognize this fluorocycline. Concomitant with this, we elucidate three structures of TP-6076 bound to the A. baumannii ribosome and determin A. baumannii ribosome. Since AdeJ and the ribosome use different binding modes to stabilize interactions with TP-6076, exploiting these differences may guide future drug development for combating antibiotic-resistant A. baumannii and potentially other strains of MDR bacteria.Some bacteria and archaea have evolved the means to use extracellular electron donors and acceptors for energy metabolism, a phenomenon broadly known as extracellular electron transfer (EET). One such EET mechanism is the transmembrane electron conduit MtrCAB, which has been shown to transfer electrons derived from metabolic substrates to electron acceptors, like Fe(III) and Mn(IV) oxides, outside the cell. Although most studies of MtrCAB-mediated EET have been conducted in Shewanella oneidensis MR-1, recent investigations in Vibrio and Aeromonas species have revealed that the electron-donating proteins that support MtrCAB in Shewanella are not as representative as previously thought. This begs the question of how widespread the capacity for MtrCAB-mediated EET is, the changes it has accrued in different lineages, and where these lineages persist today. Here, we employed a phylogenetic and comparative genomics approach to identify the MtrCAB system across all domains of life. We found mtrCAB in the genomes ofmaking them powerful agents of biogeochemical change and promising vehicles for bioremediation and alternative energy. Yet the diversity, distribution, and evolution of EET mechanisms are poorly constrained. Here, we present findings showing that the genes encoding one such EET system (mtrCAB) are present in a broad diversity of bacteria found in a wide range of environments, emphasizing the ubiquity and potential impact of EET in our biosphere. Our results suggest that these genes have been disseminated largely through horizontal transfer, and the changes they have accrued in these lineages potentially reflect adaptations to changing environments.During biofilm formation, the opportunistic pathogen Pseudomonas aeruginosa uses its type IV pili (TFP) to sense a surface, eliciting increased second-messenger production and regulating target pathways required to adapt to a surface lifestyle. The mechanisms whereby TFP detect surface contact are still poorly understood, although mechanosensing is often invoked, with few data supporting this claim. Using a combination of molecular genetics and single-cell analysis, with biophysical, biochemical, and genomics techniques, we show that force-induced changes mediated by the von Willebrand A (vWA) domain-containing, TFP tip-associated protein PilY1 are required for surface sensing. Atomic force microscopy shows that TFP/PilY1 can undergo force-induced, sustained conformational changes akin to those observed for mechanosensitive proteins like titin. We show that mutation of a single cysteine residue in the vWA domain of PilY1 results in modestly lower surface adhesion forces, reduced sustained conformational changes, and increased nanospring-like properties, as well as reduced c-di-GMP signaling and biofilm formation.