Bermanmcgowan1131

Z Iurium Wiki

Verze z 22. 9. 2024, 00:38, kterou vytvořil Bermanmcgowan1131 (diskuse | příspěvky) (Založena nová stránka s textem „The Collection is also intended to stimulate discussion on the role of JEE as a publication venue for future articles on drones as well as other cybernecti…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The Collection is also intended to stimulate discussion on the role of JEE as a publication venue for future articles on drones as well as other cybernectic-physical systems, big data analyses, and deep learning processes. While these technologies have their genesis in fields arguably afar from the discipline of entomology, we propose that interdisciplinary collaboration is the pathway for applications research and technology transfer leading to an acceleration of research and development of these technologies to improve pest management.Mexican fruit fly Anastrepha ludens (Loew) (Diptera Tephritidae) is a key economic pest of citrus and represents a quarantine issue along the United States and Mexico Border. In order to respond to this threat, the United States Department of Agriculture produces approximately 175 million sterile Mexican fruit fly pupae per week and releases approximately 150 million adult flies per week via conventional fixed wing aircraft. Unmanned aircraft systems (UAS) offer a novel means of releasing sterile insects aerially, can be deployed on short notice in rapid response scenarios, require a small footprint to operate, and offer an alternative means to releasing sterile insects to traditional manned aircraft. UAS, however, are currently limited in two key areas, range and payload capacity. Swarm technology, flying multiple UAS at once, may increase the utility of UAS by distributing payloads and release patterns across multiple UAS. In order to test the viability of swarm technology in the release of sterile insects we conducted multiple mark release recapture experiments over south Texas citrus groves during 2017, 2018, and 2019. The results of this study demonstrate improved release rates from 89.9% (n = 5) of flies released with ca. 0.64% recapture during 2018, to 98.2% (n = 6) released with ca. 0.74% recapture during 2019. These results demonstrate that swarm technology is a viable technique for increasing aerial release capacity and flexibility of sterile insect technique (SIT) programs.New Zealand apple exports must meet strict phytosanitary measures to eliminate codling moth (Cydia pomonella Linnaeus) (Lepidoptera Tortricidae) larval infestation. This study was part of a program attempting the localized eradication of codling moth within an isolated cluster of seven orchards (391 ha). A conventional management program of insecticide sprays and pheromone mating disruption was supplemented with weekly releases of sterile moths for 1-6 yr. Our objective was to compare the recapture rate of sterile moths following their release by four methods, and the efficiency of each system. The methods were the following a fixed-wing unmanned plane flying ~40-45 m high at 70 km/h, an unmanned hexacopter travelling 20 m high at 25 km/h, and manually from the ground via bicycles or motor vehicles. The different release methods were used in different years or weeks. Sterile male moths were recaptured in grids of pheromone traps positioned throughout each orchard. The highest recapture rate followed delivery by hexacopter, then bicycle, vehicle, and plane. There was a 17-fold difference in catches between releases by hexacopter and plane, and sixfold between vehicle and plane in the same season. Bicycle delivery had a 3.5-fold higher recapture rate than the plane in different years. The wind-borne horizontal drift of moths was investigated as a possible explanation for the disparity of recaptures between the two aircraft delivery systems. The methods in ascending order of time per hectare for delivery were the following plane and vehicle, hexacopter, then bicycle. The advantages and disadvantages of each moth delivery method are discussed.The frontoparietal semantic network, encompassing the inferior frontal gyrus and the posterior middle temporal cortex, is considered to be involved in semantic control processes. The explicit versus implicit nature of these control processes remains however poorly understood. The present study examined this question by assessing regional brain responses to the semantic attributes of an unattended stream of auditory words while participants' top-down attentional control processes were absorbed by a demanding visual search task. Response selectivity to semantic aspects of verbal stimuli was assessed via a functional magnetic resonance imaging response adaptation paradigm. We observed that implicit semantic processing of an unattended verbal stream recruited not only unimodal and amodal cortices in posterior supporting semantic knowledge areas, but also inferior frontal and posterior middle temporal areas considered to be part of the semantic control network. These results indicate that frontotemporal semantic networks support incidental semantic (control) processes.Disease has become an increasingly recognised problem in the marine environment, but our understanding of the factors that drive disease or our ability to predict its occurrence is limited. Marine sponges are known for their close associations with microorganisms, which are generally accepted to underpin sponge health and function. The aim of this study is to explore whether the microbial community composition of sponges can act as a predictor of disease occurrence under stressful environmental conditions. The development of a naturally occurring disease in the temperate sponge species Scopalina sp. was reproducibly recreated in a flow-through aquarium environment using increasing temperature stress. Bicuculline nmr Throughout the experiments, four morphological health states were observed and described. Fingerprinting based on terminal restriction fragment length polymorphism of the bacterial community uncovered a statistically significant signature in healthy sponges prior to stress or apparent symptoms that correlated with the time it took for the disease to occur. This shows that the bacterial community composition of individual sponges can act as predictors of necrotic disease development. To the best of our knowledge, this is the first time a microbial signature of this nature has been reported in marine sponges and this finding can contribute to unravelling cause-effect pathways for stress-related dysbiosis and disease.

Autoři článku: Bermanmcgowan1131 (Koefoed Phillips)