Dideriksenlist5214
This study presents the development and application of a new analytical methodology for determination of free- and bound-carbonyl compounds (CC) (as the CC themselves and as the hydroxyalkylsulfonic acids - HASA, respectively) in airborne particles. Free- and bound-CC determination were done through reaction with 2,4-dinitrophenylhydrazine (2,4-DNPH) and analysis by UFLC-MS. The method was successfully validated, showing good figures for linearity (R2 ≥ 0.9937), sensibility (3 fg ˂ LOD ˂ 20 fg for methacrolein and heptanal, respectively) and repeatability (5.9% ˂ RSD ˂ 13%). The proposed method was successfully applied in real samples of inhalable atmospheric particulate matter (PM10) and urban dust certified reference material (SRM 1649 b). The main CC determined in the SRM 1649 b was formaldehyde (75.4 μg g-1 in the free form, and 1898 μg g-1 in the bound form). In addition, for the bound-CC form (HASA), concentrations were determined for acetaldehyde (60.3 μg g-1), acetone (20.5 μg g-1), acrolein (9.15 μg g-1), propionaldehyde (17.1 μg g-1) and valeraldehyde (12.2 μg g-1). For PM10 samples, formaldehyde (148 μg g-1) and acetaldehyde (28.9 μg g-1) were quantified as free aldehydes and as HASA (hydroxymethanelsulfonic acid and hydroxyethanesulfonic acid were 432 μg g-1 and 211 μg g-1, respectively). Other bound-CC were, on average, within 19.2 μg g-1 (acrolein) and 62.1 μg g-1 (valeraldehyde). For all samples, acetone, acrolein, propionaldehyde and valeraldehyde were quantified only as HASA (bound-CC). Therefore, we could identify and quantify six carbonyl compounds using the proposed method. It is worth mentioning the hydrolysis step was crucial for the correct quantification of the HASAs. This was, in turn, what enabled the quantification of a greater number of analytes in the airborne samples. Hence, this procedure was found to be comprehensive, precise, accurate and suitable to be employed for determination of free-CC and HASA (bound-CC) in atmospheric particulate samples.Developing a specific and sensitive method for endogenous hydrazine detection in living systems is valuable to understand its various pathological events. In this work, two novel fluorescent chemosensors (C1, C3) based on triphenylamine Schiff-base derivative and reference dyes (C2, C4) were prepared in relatively high yield (more than 72% yield). The aggregation induced emission (AIE) properties of sensors were investigated through UV-Visible, dynamic light scattering, X-ray diffraction, fluorescence spectrophotometric analyses as well as scanning electron microscope images (SEM). The results indicated that probes C1 and C3 exhibited strong AIE property in DMF/H2O (11, v/v) mixture system with brilliant yellow fluorescence emission (560 nm) observed under 365 nm UV lamp. The experiments of sensing indicated that probes C1 and C3 possessed the sequentially detecting abilities for hydrazine with high sensitivity, specificity as well as an extremely low detection limit (55.1 nM), which was due to blocking of AIE process of probes C1 and C3 by special chemical reaction (-CHN- moiety transformed into -CH2-NH- group) after hydrazine addition, resulting in the increase in water solubility and a weak emission in aqueous media. Furthermore, 1H NMR, SEM and fluorescence titration experiment was also conducted to confirm the sensing mechanism. For biological application, probes C1 and C3 presented a good bio-imaging performance and showed the similar fluorescence quenching after adding hydrazine. Therefore, the probes are suitable for the fluorescence imaging of exogenous hydrazine in HeLa cells.Glycosylphosphatidylinositol anchored proteins (GPI-APs) are natural conjugates in the plasma membrane of eukaryotic cells that result from the attachment of a glycolipid to the C-terminus of many proteins. GPI-APs play a crucial role in cell signaling and adhesion and have implications in health and diseases. GPI-APs and GPIs without protein (free GPIs) are found in abundance on the surface of the protozoan parasite Toxoplasma gondii. The detection of anti-GPI IgG and IgM antibodies allows differentiation between toxoplasmosis patients and healthy individuals using serological assays. However, these methods are limited by their poor efficiency, cross-reactivity and need for sophisticated laboratory equipment and qualified personnel. Here, we established a label-free electrochemical glycobiosensor for the detection of anti-GPI IgG and IgM antibodies in serum from toxoplasmosis seropositive patients. This biosensor uses a synthetic GPI phosphoglycan bioreceptor immobilized on screen-printed gold electrodes through a linear alkane thiol phosphodiester. The antigen-antibody interaction was detected and quantified by electrochemical impedance spectroscopy (EIS). The resultant device showed a linear dynamic range of anti-GPI antibodies in serum ranging from 1.0 to 10.0 IU mL-1, with a limit of detection of 0.31 IU mL-1. This method also holds great potential for the detection of IgG antibodies related to other multiple medical conditions characterized by overexpression of antibodies.Simultaneous detection of various intracellular biomarkers is promising for early diagnosis and treatment of cancer. Herein, a split primer ligation-triggered catalyzed hairpin assembly-based on dual-signal electrochemical biosensor was constructed for the determination of two pairs of cancer mRNAs TK1 and c-myc, survivin and GalNAc-T by using ferrocene molecular beacon and hemin molecular beacon as detection signal sources. Each pair of targets exists simultaneously, can release the split primers and ligated as the integral primers, hybridization occurred between the integral primers and part of MBs, causing a double-stranded DNA formed. The probes hybridized with the unfolded MBs and displaced integral primers. Finally, the displaced integral primers again hybridized with the MBs and initiated cycle amplification. Under the optimal conditions, the detection limit of TK1 and c-myc mRNA is as low as 0.022 nM, and that of survivin and GalNAc-T mRNA is 0.029 nM. In addition, two pairs of cancer mRNAs could act as outputs to activate an AND logic gate.On-site detection of substance abuse is an important approach in the preventive and intervention protocols implementations. It is known that the traditional methods are heavy, time-consuming, and need a high level of logistical requirements. As such, biosensors represent great potential to simplify and improve substance abuse detection. In this study, we have designed a functionalized screen-printed electrode (SPE) electrochemical biosensor with cobalt oxide nanoparticles and single-chain antibody fragments (scFvs) for cocaine detection. Different electrochemical techniques such as differential pulse voltammetry, cyclic voltammetry, and electrochemical impedance spectrometry were used to examine the functionality of the designed biosensor. Furthermore, SEM observations were performed to observe the surface changes after functionalization. The results showed that the linearity ranged between 5.0 and 250 ng/mL and a detection limit of 3.6 ng/mL (n = 6). These results were compared to results obtained from Q-TOF/MS where four different matrices (serum, sweat, urine, and saliva) were spiked with 100 ng/mL cocaine and were analyzed by both methods (Biosensor and Q-TOF/MS). Results showed a higher performance of the biosensor compared to traditional methods. In addition, the selectivity of the biosensor was shown in the presence of different interferents where the designed platform showed a specific response to only cocaine. In conclusion, the designed biosensor proposes great potential for portable and on-site substance abuse detection in addition to boasting the capability of reuse of the SPE and thus, reducing the costs related to such applications.A rapid highly sensitive genosensor has been developed for monitoring the presence of Legionella spp. in different water systems (domestic hot water, heating/cooling systems or cooling towers) in order to avoid its spreading from the source of contamination. The genosensor integrates a loop mediated isothermal amplification (LAMP) reaction with an electrochemical transduction signal, producing a very simple, rapid to perform and cost effective method, suitable for in situ analyses. This approach detects as low as 10 fg of Legionella nucleic acid, corresponding to only 2 number copies of the bacteria. The use of an electrochemical redox-active double stranded DNA (dsDNA) intercalating molecule, known as methylen blue (MB), allows the immediate electrochemical reading during the DNA polymerization. learn more The sensor can obtain quantitative results in 20 min with a correlation between the electrochemical data and Legionella spp. copy number (at a logarithmic scale) of r = -0.97. In conclusion, a fast, easy to use, and accurate electrochemical genosensor, with high precision, sensitivity, and specificity has been developed for in situ detection of Legionella spp. enabling real time decision making and improving significantly the current detection methods for the prevention and screening of Legionella.Sulfur-containing species are essential in the composition and the metabolism of the organisms, thus developing a full set of implements to cover all of them is still a favorable choice. Herein, we chose imidazo [1,5-α]pyridine moiety as the basic fluorophore for the detection of sulfite, and preliminarily completed the toolset since biothiols (GSH, Cys, Hcy), H2S, and PhSH could be detected by sensors based on the same backbone. The designed sensor, IPD-SFT, with structural novelty and large Stokes shift (130 nm), indicated the most attractive advantages of remarkably rapid response period (within 1 min) and high selectivity for sulfite from all the sulfur-containing species. Other practical properties included high sensitivity (LOD = 50 nM) and wide pH adaptability (5.0-11.0). Furthermore, IPD-SFT could monitor both exogenous and endogenous sulfite. It not only raised a potential tool for sulfite detection, but also preliminarily completed the toolset for all the sulfur-containing species. The development of such toolsets might reveal the sulfur-containing metabolism and corresponding physiology and pathological procedures.We developed a simple approach to form picoliter to nanoliter monodisperse droplets by controlling the interface of an asymmetrical beveled capillary (ABC), with minimalist device of a beveled capillary and a liquid driving module without the need of additional equipment or external forces. We observed an evident leap decrease effect in droplet size specially existed in a capillary with a beveled outlet interface instead of a conventional flat capillary within proper bevel angle and flow rate range, by which droplets with diameters of 2-5 times the inner diameter of the capillary could be spontaneously generated by surface tension. A preliminary theoretical explanation is given to the mechanism of droplet formation at the capillary beveled interface. Various factors affecting the droplet generation process were studied, including capillary hydrophilicity, bevel angle, beveled outlet size, and inner diameter of the capillary, and dispersed phase flow rate. In the optimized condition range, good linear relationship between the droplet volume and the capillary inner diameter (10-100 μm) were obtained, which could be used to conveniently adjust the droplet volume with an adjustable droplet volume range up to 1000 times.