Cashholt4536
Mass transfer of guest molecules has a significant impact on the applications of nanoporous crystalline materials and particularly shape-selective catalysis over zeolites. Control of mass transfer to alter reaction over zeolites, however, remains an open challenge. Recent studies show that, in addition to intracrystalline diffusion, surface barriers represent another transport mechanism that may dominate the overall mass transport rate in zeolites. We demonstrate that the methanol-to-olefins (MTO) reaction can be modulated by regulating surface permeability in SAPO-34 zeolites with improved chemical liquid deposition and acid etching. Our results explicitly show that the reduction of surface barriers can prolong catalyst lifetime and promote light olefins selectivity, which opens a potential avenue for improving reaction performance by controlling the mass transport of guest molecules in zeolite catalysis.In the native wood cell wall, cellulose microfibrils are highly aligned and organized in the secondary cell wall. A new preparation strategy is developed to achieve individualization of cellulose microfibrils within the wood cell wall structure without introducing mechanical disintegration. The resulting mesoporous wood structure has a high specific surface area of 197 m2 g-1 when prepared by freeze-drying using liquid nitrogen, and 249 m2 g-1 by supercritical drying. These values are 5 to 7 times higher than conventional delignified wood (36 m2 g-1 ) dried by supercritical drying. Such ARS-853 in vitro with individualized cellulose microfibrils maintaining their natural alignment and organization can be processed into aerogels with high porosity and high compressive strength. In addition, a strong film with a tensile strength of 449.1 ± 21.8 MPa and a Young's modulus of 51.1 ± 5.2 GPa along the fiber direction is obtained simply by air drying owing to the self-densification of cellulose microfibrils driven by the elastocapillary forces upon water evaporation. The self-densified film also shows high optical transmittance (80%) and high optical haze (70%) with interesting biaxial light scattering behavior owing to the natural alignment of cellulose microfibrils.
Low utilization of the family-oriented community rehabilitation services is a threatening challenge facing low- and middle- income countries. Family caregiver's trust in community healthcare providers is the precondition of service utilization and is shaped by their perceived quality of primary healthcare services from previous experience. Most of the studies concerning the relationship between perceived quality and institutional trust were conducted in western countries, resulting in limited attention paid to conditions in non-western countries. Which aspect of quality predicts institutional trust in China has not been studied yet.
In China's context, institutional trust was generally associated with communication, worry relief and risk of privacy leak, but not with technical competence. Significant rural-urban disparity was observed among rural respondents, institutional trust was associated with technical competence, communication and risk of privacy leak, but not with worry relief; institutional trustetence. #link# Among rural respondents, institutional trust was associated with technical competence, communication and risk of privacy leak, but not with worry relief. Contrary finding was observed in urban respondents. Discussion and implications for practice With rural-urban disparity considered, strategies such as improving the technical and communicative competence of community healthcare workers, providing family-oriented psycho-education and emotional support, and promoting public anti-stigma initiatives may be worth consideration.There are several reports of pleural adenomatoid (microcystic) mesothelioma, but peritoneal adenomatoid mesothelioma is extremely rare. A 64-year-old Japanese woman presented with no symptoms and no asbestos exposure history. An abdominal computed tomography scan revealed multiple hypervascular masses on the liver surface, pelvic cavity and anterior peritoneum. Over 10 pieces of the multiple resected tumors showed numerous microcysts composed of a bland mesothelial cell background with rich capillary vessels. link2 Focally, atypical cells with bizarre nuclei with prominent nucleoli were observed. Adenomatoid mesothelioma was suspected based on histochemical, immunohistochemical and fluorescence in situ hybridization findings. The tumors relapsed 4 years later and metastasized to the lung, but the patient remains alive 7 years after the first tumor resection surgery. Although the prognosis of adenomatoid mesothelioma of pleural origin is poor, the progression of this peritoneal case is slow.Beaver dams are gaining popularity as a low-tech, low-cost strategy to build climate resiliency at the landscape scale. They slow and store water that can be accessed by riparian vegetation during dry periods, effectively protecting riparian ecosystems from droughts. Whether or not this protection extends to wildfire has been discussed anecdotally but has not been examined in a scientific context. We used remotely sensed Normalized Difference Vegetation Index (NDVI) data to compare riparian vegetation greenness in areas with and without beaver damming during wildfire. We include data from five large wildfires of varying burn severity and dominant landcover settings in the western United States in our analysis. We found that beaver-dammed riparian corridors are relatively unaffected by wildfire when compared to similar riparian corridors without beaver damming. On average, the decrease in NDVI during fire in areas without beaver is 3.05 times as large as it is in areas with beaver. However, plant greenness rebounded in the year after wildfire regardless of beaver activity. Thus, we conclude that, while beaver activity does not necessarily play a role in riparian vegetation post-fire resilience, it does play a significant role in riparian vegetation fire resistance and refugia creation.Previous research has shown that the prenatal environment, commonly indexed by birth weight (BW), is a predictor of morphological brain development. We previously showed in monozygotic (MZ) twins associations between BW and brain morphology that were independent of genetics. In the present study, we employed a longitudinal MZ twin design to investigate whether variations in prenatal environment (as indexed by discordance in BW) are associated with resting-state functional connectivity (rs-FC) and with structural connectivity. We focused on the limbic and default mode networks (DMNs), which are key regions for emotion regulation and internally generated thoughts, respectively. One hundred and six healthy adolescent MZ twins (53 pairs; 42% male pairs) followed longitudinally from birth underwent a magnetic resonance imaging session at age 15. Graph theoretical analysis was applied to rs-FC measures. TrackVis was used to determine track count as an indicator of structural connectivity strength. Lower BW twins had less efficient limbic network connectivity as compared to their higher BW co-twin, driven by differences in the efficiency of the right hippocampus and right amygdala. Lower BW male twins had fewer tracks connecting the right hippocampus and right amygdala as compared to their higher BW male co-twin. There were no associations between BW and the DMN. These findings highlight the possible role of unique prenatal environmental influences in the later development of efficient spontaneous limbic network connections within healthy individuals, irrespective of DNA sequence or shared environment.Super-concentrated "water-in-salt" electrolytes recently spurred resurgent interest for high energy density aqueous lithium-ion batteries. link3 Thermodynamic stabilization at high concentrations and kinetic barriers towards interfacial water electrolysis significantly expand the electrochemical stability window, facilitating high voltage aqueous cells. Herein we investigated LiTFSI/H2 O electrolyte interfacial decomposition pathways in the "water-in-salt" and "salt-in-water" regimes using synchrotron X-rays, which produce electrons at the solid/electrolyte interface to mimic reductive environments, and simultaneously probe the structure of surface films using X-ray diffraction. We observed the surface-reduction of TFSI- at super-concentration, leading to lithium fluoride interphase formation, while precipitation of the lithium hydroxide was not observed. The mechanism behind this photoelectron-induced reduction was revealed to be concentration-dependent interfacial chemistry that only occurs among closely contact ion-pairs, which constitutes the rationale behind the "water-in-salt" concept.
This study aimed to investigate the antimicrobial resistance (AMR) profiles and genotypes of Streptococcus suis from Jiangxi Province, China.
A total of 314 nasal swab samples were collected from clinically healthy pigs, with a positive isolation rate of S. suis of 34·08%. Antimicrobial susceptibility testing showed that more than 80% of the isolates were susceptible to vancomycin, penicillin, minocycline and chloramphenicol. A high frequency of resistance to clindamycin, tetracycline, clarithromycin and erythromycin was observed. All of the isolates were resistant to three or more categories of antimicrobials. The erm(B) and tet(O) served as the most frequent genotypes that contributed to lincosamide, macrolide and tetracycline resistances. A part of macrolide-resistant genotypes could not exhibit specific phenotypes. Finally, integrative and conjugative elements (ICEs) were identified in 28·97% of the isolates.
The multidrug resistance of S. suis has widely emerged in Jiangxi Province. The most prevalent resistance genes and genotypes were similar to those in other regions or countries. The presence of ICEs is increasing the risk of horizontal transfer of AMR genes.
The findings could provide guidance for the rational use of antimicrobial drugs and be helpful for monitoring the AMR information of S. suis in China.
The findings could provide guidance for the rational use of antimicrobial drugs and be helpful for monitoring the AMR information of S. suis in China.Cisplatin, a proven effective chemotherapeutic agent, has been used clinically to treat malignant solid tumors, whereas its clinical use is limited by serious side effect including nephrotoxicity. Platycodin D (PD), the major and marked saponin isolated from Platycodon grandiflorum, possesses many pharmacological effects. In this study, we evaluated its protective effect against cisplatin-induced human embryonic kidney 293 (HEK-293) cells injury and elucidated the related mechanisms. Our results showed that PD (0.25, 0.5, and 1 μM) can dose-dependently alleviate oxidative stress by decreasing malondialdehyde and reactive oxygen species, while increasing the levels of glutathione, superoxide dismutase, and catalase. Moreover, the elevation of apoptosis including Bax, Bad, cleaved caspase-3,-9, and decreased protein levels of Bcl-2, Bcl-XL induced by cisplatin were reversed after PD treatment. Importantly, PD pretreatment can also regulate PI3K/Akt and ERK/JNK/p38 signaling pathways. Furthermore, PD was found to reduce NF-κB-mediated inflammatory relative proteins.