Watersdaniel6845

Z Iurium Wiki

Verze z 22. 9. 2024, 00:20, kterou vytvořil Watersdaniel6845 (diskuse | příspěvky) (Založena nová stránka s textem „A significant correlation between Ki67 and p-STAT3 expression levels was demonstrated in the non-NGM of patients with early GC. In patients with early GC w…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

A significant correlation between Ki67 and p-STAT3 expression levels was demonstrated in the non-NGM of patients with early GC. In patients with early GC without SOCS3 methylation, the labeling indices of both Ki67 and p-STAT3 in non-NGM were significantly reduced after H. pylori eradication, whereas no such change was observed in patients with early GC with SOCS3 methylation. SOCS3 methylation is associated with continuous p-STAT3 overexpression and enhanced epithelial cell proliferation in non-NGM of patients with early GC. Copyright © Fukui et al.Keratin 17 (KRT17) has been demonstrated to be a potential biological marker for the prediction of prognosis in particular types of cancer. The aim of the present study was to investigate the molecular mechanisms underlying the function of KRT17 in the pancreatic cancer (PAC) cell line PANC-1 and the potential of KRT17 as a therapeutic target for PAC. KRT17 expression levels were analyzed using quantitative PCR and compared with histological data using bioinformatics tools in PAC samples and three human PAC cell lines. Cell proliferation was determined using an MTT assay, in addition to cell cycle distribution and apoptosis analysis using flow cytometry, colony formation assay using Giemsa staining and cell motility analysis using a Transwell migration assay. Tumor growth was evaluated in vivo in nude mice. The expression levels of a number of signaling molecules were measured to establish the potential mechanism by which silencing KRT17 expression affected PAC PANC-1 cells. Increased levels of KRT17 expressilts of the present study suggested that KRT17 may be a potential target for the treatment of pancreatic cancer. Copyright © Chen et al.Peroxiredoxin IV (PRDX4) is a multifunctional protein that is involved in cell protection against oxidative injury, regulation of cell proliferation, modulation of intracellular signaling, and the pathogenesis of tumors. We previously conducted a proteomic analysis to investigate tumor-specific protein expression in gastric cancer. The aim of the present study was to investigate whether PRDX4 could be a marker of poor prognosis in patients with gastric cancer. Immunohistochemistry was used to validate PRDX4 as a prognostic marker for gastric cancer. Short hairpin RNA (shRNA)-mediated knockdown of PRDX4 expression in AGS cells and MKN28 cells was used for functional studies, and PRDX4 overexpression in PRDX4-depleted cells was used for knock-in studies. Based on immunohistochemistry data, TNM stage and PRDX4 were independent prognostic factors in the Cox proportional hazard model (P less then 0.05). In the survival analysis, the PRDX4-overexpressing group demonstrated significantly worse survival than the PRDX4-underexpression group (P less then 0.01). In vitro, knockdown of PRDX4 expression by shRNA caused a significant decrease in cancer invasion. Conversely, overexpression of PRDX4 in PRDX4-depleted cancer cells promoted migration and invasion. By measuring the expression of EMT-related genes, we found that E-cadherin was increased in shPRDX4 cells compared with control shMKN28 cells, and snail and slug were decreased in shPRDX4-1 cells compared with sh-control cells. Furthermore, the expression levels of these genes could be recovered in rescue experiments. In conclusion, the results of the present study suggested that PRDX4 is a marker of poor prognosis in gastric cancer and that PRDX4 is associated with cancer cell migration and invasion via EMT. Copyright © Park et al.The present study aimed to investigate the probability of cancer-associated mortality of patients with esophageal cancer undergoing intensity-modulated radiation therapy (IMRT), and to establish a competing risk nomogram to predict the esophageal cancer-specific survival (EC-SS) of these patients. A total of 213 patients with EC who underwent IMRT between January 2014 and May 2017 were selected to establish nomograms according to Fine and Gray's competing risk analysis. Predictive accuracy and discriminative ability of the model were determined using the concordance index (C-index), calibration curves and the area under receiver operating characteristic curves. Decision tree analysis was also constructed for patient grouping. With a median follow-up of 19 months (range, 3-50), the 2-year EC-specific mortality (EC-SM) and the non-esophageal cancer specific mortality (NEC-SM) of the cohort were 35.4 and 3.51%, respectively. Furthermore, an elevated 2-year EC-SM was observed in patients with tumor length ≥4.5 cmompeting event for patients with EC with a tumor length ≥4.5 cm. The competing risk nomograms may therefore be considered as convenient individualized predictive tools for cancer-specific survival in patients with EC undergoing IMRT treatment. Copyright © Zhao et al.Budding uninhibited by benzimidazoles 1 (BUB1) is a mitotic checkpoint serine/threonine kinase that has been reported as an oncogene or tumor suppressor gene in various types of cancer, including breast cancer, pancreatic ductal adenocarcinoma, prostate and gastric cancers. However, its role in liver cancer remains unclear. The present study aimed to explore the biological function of BUB1 in liver cancer. The present study demonstrated that BUB1 mRNA expression levels and the intensity of immunohistochemical staining were significantly increased in liver cancer tissues compared with normal tissues. The role of BUB1 in cell proliferation was also determined. Overexpression of BUB1 significantly promoted cell proliferation, whereas knockdown of BUB1 expression inhibited the proliferation of liver cancer cell lines. In experiments investigating the underlying mechanism, overexpression of BUB1 increased the levels of SMAD2 phosphorylation, whereas knockdown of BUB1 reduced the levels of SMAD2 phosphorylation. Therefore, BUB1 may promote proliferation of liver cancer cells by activating phosphorylation of SMAD2, and BUB1 may serve as a potential target in the diagnosis and/or treatment of liver cancer. Copyright © Zhu et al.Lung cancer is the most common type of cancer and the leading cause of cancer-associated death worldwide. Malignant pleural effusion (MPE), which is observed in ~50% of advanced non-small cell lung cancer (NSCLC) cases, and most frequently in lung adenocarcinoma, is a common complication of stage III-IV NSCLC, and it can be used to predict a poor prognosis. In the present study, multiple oncogene mutations were detected, including 17 genes closely associated with initiation of advanced lung cancer, in 108 MPE samples using next generation sequencing (NGS). The NGS data of the present study had broader coverage, deeper sequencing depth and higher capture efficiency compared with NGS findings of previous studies on MPE. In the present study, using NGS, it was demonstrated that 93 patients (86%) harbored EGFR mutations and 62 patients possessed mutations in EGFR exons 18-21, which are targets of available treatment agents. EGFR L858R and exon 19 indel mutations were the most frequently observed alterations, with frequencies of 31 and 25%, respectively. In 1 patient, an EGFR amplification was identified and 6 patients possessed a T790M mutation. ALK + EML4 gene fusions were identified in 6 patients, a ROS1 + CD74 gene fusion was detected in 1 patient and 10 patients possessed a BIM (also known as BCL2L11) 2,903-bp intron deletion. In 4 patients, significant KRAS mutations (G12D, G12S, G13C and A146T) were observed, which are associated with resistance to afatinib, icotinib, erlotinib and gefitinib. There were 83 patients with ERBB2 mutations, but only two of these mutations were targets of available treatments. The results of the present study indicate that MPE is a reliable specimen for NGS based detection of somatic mutations. Copyright © Ruan et al.A number of studies suggest an association between miRNAs and diffuse large B-cell lymphoma (DLBCL). selleck chemicals llc The present study aimed to investigate the prognostic value of microRNA (miR-150) in primary gastrointestinal (PGI)-DLBCL, by assessing the association between miR-150 expression and clinicopathological characteristics in patients with PGI-DLBCL. A total of 84 patients diagnosed with PGI-DLBCL were recruited and both tumor and adjacent non-tumor tissue samples were collected. miR-150 expression was assessed via reverse transcription-quantitative (RT-q)PCR analysis. The results demonstrated that miR-150 expression was significantly lower in PGI-DLBCL tissues compared with adjacent non-tumor tissues. Furthermore, receiver operating characteristic (ROC) curve analysis indicated that the optimal cut-off value of miR-150 for predicting survival was 8.965 with high sensitivity (79.8%) and specificity (77.1%). Patients were divided into two groups according to this cut-off value, as follows High (n=18) and low expression (n=66) groups. Low miR-150 expression was significantly associated with clinical stage, International Prognostic Index (IPI), Eastern Cooperative Oncology Group status and use of rituximab. RT-qPCR analysis demonstrated that miR-150 expression was significantly lower in patients with high IPI scores compared with patients with low IPI scores. Downregulated miR-150 expression was significantly associated with shorter overall survival (OS) time and progression-free survival (PFS) time in patients with PGI-DLBCL. Furthermore, miR-150 level and IPI score were identified as two risk factors for OS and PFS. The diagnostic value of miR-150 was evaluated via ROC curve analysis, with an area under the curve value of 0.882. Taken together, the results of the present study suggest that miR-150 is a potential diagnostic marker of PGI-DLBCL, and may also serve as a useful prognostic factor for survival outcomes in patients with PGI-DLBCL. Copyright © Wang et al.Chronic hepatitis B virus (HBV) is one of the leading causes of hepatocellular carcinoma (HCC). The precise molecular mechanisms by which HBV contributes to HCC development are not fully understood. The key genes and pathways involved in the transformation of nontumor hepatic tissues into HCC tissues in patients with HBV infection are essential to guide the treatment of HBV-associated HCC. Five datasets were collected from the Gene Expression Omnibus database to form a large cohort. Differentially expressed genes (DEGs) were identified between HCC tissues and nontumor hepatic tissues from HBV-infected patients using the 'limma' package. The top 50 upregulated and top 50 downregulated DEGs in HCC vs. nontumor tissues were demonstrated in subsets by heat maps. Based on the DEGs, Gene Ontology functional and Kyoto Encyclopedia of Genes and Genomes pathways enrichment analyses were performed. Several key pathways of the up- and downregulated DEGs were identified and presented by protein-protein interaction (PPI) networks. A total of 1,934 DEGs were identified. The upregulated DEGs were primarily associated with the 'cell cycle'. Among the DEGs enriched in the 'cell cycle' pathway, 6 genes had a log2-fold change >2 SFN, BUB1B, TTK, CCNB1, CDK1 and CDC20. The downregulated DEGs were primarily associated with the metabolic pathways, such as 'carbon metabolism', 'glycine, serine and threonine metabolism', 'tryptophan metabolism', 'retinol metabolism' and 'alanine, aspartate and glutamate metabolism'. The DEGs in the 'cell cycle' and 'metabolic pathways' were presented by the PPI networks respectively. Overall, the present study provides new insights into the specific etiology of HCC and molecular mechanisms for the transformation of nontumor hepatic tissues into HCC tissues in patients with a history of HBV infection and several potential therapeutic targets for targeted therapy in these patients. Copyright © Zhang et al.

Autoři článku: Watersdaniel6845 (Hanley Lunding)