Randallploug5806
Increased number of years since the most recent TBI correlated with higher exosomal NfL and lower plasma IL-6 levels, while increased number of years since first TBI correlated with higher levels of exosomal and plasma NfL, as well as plasma TNF-α and VEGF. Conclusion Repetitive mTBIs are associated with elevated exosomal and plasma levels of NfL, even years following these injuries, with the greatest elevations in those with chronic PCS, PTSD, and depression symptoms. Our results suggest a possible neuroinflammatory and axonal disruptive basis for symptoms that persist years after mTBI, especially repetitive.Zinc supplementation in cell culture has been shown to inhibit various viruses, like herpes simplex virus, rotavirus, severe acute respiratory syndrome (SARS) coronavirus, rhinovirus, and respiratory syncytial virus (RSV). However, whether zinc plays a direct antiviral role in viral infections and whether viruses have adopted strategies to modulate zinc homeostasis have not been investigated. Results from clinical trials of zinc supplementation in infections indicate that zinc supplementation may be beneficial in a pathogen- or disease-specific manner, further underscoring the importance of understanding the interaction between zinc homeostasis and virus infections at the molecular level. We investigated the effect of RSV infection on zinc homeostasis and show that RSV infection in lung epithelial cells leads to modulation of zinc homeostasis. Selleckchem Buloxibutid The intracellular labile zinc pool increases upon RSV infection in a multiplicity of infection (MOI)-dependent fashion. Small interfering RNA (siRNA)-mediated knockdownncy, but the outcomes in the case of respiratory infections have been inconsistent. We aimed at understanding the role of zinc homeostasis in respiratory syncytial virus (RSV) infection. Infection of lung epithelial cell lines or primary small-airway epithelial cells led to an increase in labile zinc pools, which was due to increased uptake of zinc. Zinc supplementation inhibited RSV replication, whereas zinc chelation had an opposing effect, leading to increases in RSV titers. Increases in labile zinc in RSV-infected cells coincided with induction of reactive oxygen species (ROS). Both zinc depletion and addition of exogenous ROS led to enhanced RSV infection, whereas addition of the antioxidant inhibited RSV, suggesting that zinc is part of an interplay between RSV-induced oxidative stress and the host response to maintain redox balance.Providencia stuartii is a common cause of polymicrobial catheter-associated urinary tract infection (CAUTI), and yet literature describing the molecular mechanisms of its pathogenesis is limited. To identify factors important for colonization during single-species infection and during polymicrobial infection with a common cocolonizer, Proteus mirabilis, we created a saturating library of ∼50,000 transposon mutants and conducted transposon insertion site sequencing (Tn-Seq) in a murine model of CAUTI. P. stuartii strain BE2467 carries 4,398 genes, 521 of which were identified as essential for growth in laboratory medium and therefore could not be assessed for contribution to infection. Using an input/output fold change cutoff value of 20 and P values of less then 0.05, 340 genes were identified as important for establishing single-species infection only and 63 genes as uniquely important for polymicrobial infection with P. mirabilis, and 168 genes contributed to both single-species and coinfection. Seven mutaof this organism. Using transposon insertion site sequencing (Tn-Seq), we performed a global assessment of P. stuartii fitness factors for CAUTI while simultaneously determining how coinfection with another pathogen alters fitness requirements. This approach provides four important contributions to the field (i) the first global estimation of P. stuartii genes essential for growth in laboratory medium, (ii) identification of novel fitness factors for P. stuartii colonization of the catheterized urinary tract, (iii) identification of core fitness factors for both single-species and polymicrobial CAUTI, and (iv) assessment of conservation of fitness factors between common uropathogens. Genomewide assessment of the fitness requirements for common uropathogens during single-species and polymicrobial CAUTI thus elucidates complex interactions that contribute to disease severity and will uncover conserved targets for therapeutic intervention.Copper is broadly toxic to bacteria. As such, bacteria have evolved specialized copper export systems (cop operons) often consisting of a DNA-binding/copper-responsive regulator (which can be a repressor or activator), a copper chaperone, and a copper exporter. For those bacteria using DNA-binding copper repressors, few studies have examined the regulation of this operon regarding the operator DNA sequence needed for repressor binding. In Streptococcus pneumoniae (the pneumococcus), CopY is the copper repressor for the cop operon. Previously, homologs of pneumococcal CopY have been characterized to bind a 10-base consensus sequence T/GACANNTGTA known as the cop box. Using this motif, we sought to determine whether genes outside the cop operon are also regulated by the CopY repressor, which was previously shown in Lactococcus lactis We found that S. pneumoniae CopY did not bind to cop operators upstream of these candidate genes in vitro During this process, we found that the cop box sequence is necessary but npressors that have been said to bind to the original 10 bases, including many antibiotic resistance repressors such as BlaI and MecI, we feel that this study highlights the need to reexamine many of these sites of the past and use added stringency for verifying operators in the future.Nontypeable Haemophilus influenzae (NTHI) colonizes the human nasopharynx, but when the host immune response is dysregulated by upper respiratory tract (URT) virus infection, NTHI can gain access to more distal airway sites and cause disease. The NTHI type IV pilus (T4P) facilitates adherence, benign colonization, and infection, and its majority subunit PilA is in clinical trials as a vaccinogen. To further validate the strategy of immunization with PilA against multiple NTHI-induced diseases, it is important to demonstrate T4P expression under microenvironmental conditions that predispose to NTHI infection of the airway. Because URT infection commonly facilitates NTHI-induced diseases, we examined the influence of ongoing virus infection of respiratory tract epithelial cells on NTHI T4P expression in vitro Polarized primary human airway epithelial cells (HAEs) were sequentially inoculated with one of three common URT viruses, followed by NTHI. Use of a reporter construct revealed that NTHI upregulated pilA promoter activity when cultured with HAEs infected with adenovirus (AV), respiratory syncytial virus (RSV), or rhinovirus (RV) versus that in mock-infected HAEs.