Hartvigodom6336

Z Iurium Wiki

Verze z 21. 9. 2024, 23:54, kterou vytvořil Hartvigodom6336 (diskuse | příspěvky) (Založena nová stránka s textem „In this paper, the phase structure, composition distribution, grain morphology, and hardness of Al6061 alloy samples made with additive friction stir depos…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

In this paper, the phase structure, composition distribution, grain morphology, and hardness of Al6061 alloy samples made with additive friction stir deposition (AFS-D) were examined. A nearly symmetrical layer-by-layer structure was observed in the cross section (vertical with respect to the fabrication-tool traversing direction) of the as-deposited Al6061 alloy samples made with a back-and-forth AFS-D strategy. Equiaxed grains were observed in the region underneath the fabrication tool, while elongated grains were seen in the "flash region" along the mass flow direction. No clear grain size variance was discovered along the AFS-D build direction except for the last deposited layer. Grains were significantly refined from the feedstock (~163.5 µm) to as-deposited Al6061 alloy parts (~8.5 µm). The hardness of the as-fabricated Al6061 alloy was lower than those of the feedstock and their heat-treated counterparts, which was ascribed to the decreased precipitate content and enlarged precipitate size.Ultraviolet radiation, oxidation, temperature, moisture, and traffic loads produce degradation and brittleness in the asphalt pavement. Microcracks develop into macrocracks, which eventually lead to pavement failure. Although asphalt has an inherent capacity for self-healing, it is constricted. As a result, damages build beyond the ability of asphalt to repair themselves. This research employs the in-situ crack healing method of encapsulated rejuvenator technology to enhance the insufficient self-healing capability of roads. This allows the extrinsically induced healing in asphalt to assist it in recovering from damage sustained during service life. Optical microscopy, thermogravimetric analysis, and the compressive load test of capsules were done to characterise their properties. We measured the self-healing behaviour of encapsulated rejuvenator-induced asphalt utilising the three-point bending beam tests on unaged, short-term aged and long-term aged asphalt beams. The rate of oil release before and after healing was quantified using Fourier transform infrared spectroscopy. The results of these tests were utilised to explain the link between healing time, temperature, asphalt ageing, and healing level. Overall, it was determined that the encapsulated rejuvenator was acceptable for mending asphalt mixes because it increased healing temperature and duration, resulting in an up to 80% healing index.NEED-The effect of dimensional variability of sheet thickness (tolerance) and tool misalignment is poorly understood for the clinching process. Finite element analysis (FEA) is valuable but requires a lot of and is difficult to verify in this situation due to the asymmetrical geometry and nonlinear plasticity. OBJECTIVE-The objective of this work was to determine the effect of thickness tolerance, tool misalignment and sheet placement (top vs. bottom) in the clinching process, by use of analogue modelling with plasticine. METHOD-Experiments used a scaled-up punch and die, with plasticine as the analogue. Thickness tolerances were represented by sheet thicknesses of 11 and 7 mm, 12 and 8 mm, 8 and 12 mm and 13 and 9 mm for upper and lower sheets, respectively. Two types of lubricant were tested between sheets glycerine and silicone oil. Angular variability was also introduced. Measured parameters were interlock (also called undercut) and neck thickness. Analogue results for deformation were compared with microscopy of metal clinching. FINDINGS-The results reveal that the multiscale analogue model is an efficient tool for studying the effect of dimensional deviation on a clinch joint. Fludarabine concentration Thickness tolerance showed a critical relationship with interlock, namely a reduction to about half that of the nominal, for both maximum and least material conditions. Increased angular misalignment also reduced the interlock. Compared with glycerine, silicone oil tests showed reduced interlock, possibly the result of a lower coefficient of friction. ORIGINALITY-This work demonstrates the usefulness of analogue modelling for exploring process variability in clinching. The results also show that significant effects for sheet placement are ductility, lubricant (friction), thickness of samples and tool misalignment.The impact of aircraft on airport pavements is varied and closely related to their operational durability. The article presents the impact of the annealing process related to the forced impact of airplanes on airport pavements. The composition of cement concrete with ceramic dust, which is characterized by increased thermal resistance, has been proposed. Two research cycles were programmed, differentiated by the annealing scheme and the way in which the temperature influences the annealing time. Samples stored at a temperature of 20 ± 2 °C were subjected to testing. The tests were carried out for two diagrams A and B. The first-diagram A-included the continuous impact of the flue gas stream on the samples for a period of 350 min with a test step every 25 min. For the second-diagram B-the samples were alternately heated (1 min) and cooled (15 min). The influence of the proposed pavement mix on changes in the internal structure of cement concrete and the increase in its resistance to high temperatures was deterle temperature increase. In scheme A, the average temperature increase on the heated surface ranged from 46 °C to 79.5 °C for CC-1 concrete, and from 33.3 °C to 61.3 °C for CC-2 concrete. However, in scheme B, the temperature after 350 heating cycles for CC-1 concrete increased to 129.8 °C, and for CC-2 concrete to 116.6 °C. After the cooling period, the temperature of CC-1 and CC-2 concrete was comparable and amounted to 76.4 C and 76.3 °C, respectively. CC-2 concrete heats to lower values, and favorable changes in internal structure translate into higher strength and durability (after 350 heating cycles according to scheme A, the strength of CC-1 concrete was 67.1 MPa and of CC-2 concrete 83.9 MPa, while in scheme B, respectively, 55.4 MPa for CC-1 and 75 MPa for CC-2).The development of LiFePO4 (LFP) in high-power energy storage devices is hampered by its slow Li-ion diffusion kinetics. Constructing the composite electrode materials with vanadium substitution is a scientific endeavor to boost LFP's power capacity. Herein, a series of xLiFePO4·yLi3V2(PO4)3 (xLFP·yLVP) composites were fabricated using a simple spray-drying approach. We propose that 5LFP·LVP is the optimal choice for Li-ion battery promotion, owning to its excellent Li-ion storage capacity (material energy density of 413.6 W·h·kg-1), strong machining capability (compacted density of 1.82 g·cm-3) and lower raw material cost consumption. Furthermore, the 5LFP·LVP||LTO Li-ion pouch cell also presents prominent energy storage capability. After 300 cycles of a constant current test at 400 mA, 75% of the initial capacity (379.1 mA·h) is achieved, with around 100% of Coulombic efficiency. A capacity retention of 60.3% is displayed for the 300th cycle when discharging at 1200 mA, with the capacity fading by 0.15% per cycle. This prototype provides a valid and scientific attempt to accelerate the development of xLFP·yLVP composites in application-oriented Li-ion batteries.This study analyzes the behavior under the static delamination and mode-I fracture stress of adhesive joints made on the same composite material with an epoxy matrix and unidirectional carbon fiber reinforcement and two types of adhesives, one epoxy and the other acrylic. Standard DCB tests (for mode-I fracture) were used to quantify the influence on the interlaminar fracture toughness of the type of adhesive used. Both materials were subjected to two different degradation processes, one hygrothermal and the other in a salt-fog chamber. After aging, the mode-I fracture has been evaluated for both materials. From the experimental results obtained, it can be deduced for the epoxy adhesive that exposure to the hygrothermal environment used moderately modifies its behavior against delamination, while its exposure to the saline environment produces a significant loss of its resistance to delamination. For the acrylic adhesive, the hygrothermal exposure causes an improvement in its delamination behavior for all the exposure periods considered, while the saline environment slightly modifies its behavior. There is, therefore, a clear influence of the type of aging on the fracture behavior of both adhesives.The reliable mechanical properties of ceramizable silicone rubber composites during pyrolysis are necessary for their application in the fire-resistant fields. The effects of liquid-phase amount on the mechanical properties of silicone rubber composites are investigated. The results show a positive correlation between the liquid-phase amount and the flexural strength of the residual products pyrolysis below 800 °C. The nano-γ-Al2O3 in the fillers reacts with liquid B2O3 to form aluminum borate above 800 °C, which consumes the liquid phase and strengthens the residual products to a certain extent. Increasing the B2O3 addition and introducing nano-γ-Al2O3 can control the liquid-phase amount in the range of 15% to 30%, which makes the composites have better residual strength and support performance. The residual strength of composites pyrolysis at 500 °C to 1000 °C is higher than 2.50 MPa, and the maximum is up to 18.7 MPa at 1000 °C.Autogenous bone grafts are the gold standard for interbody fusion implant materials; however, they have several disadvantages. Tantalum (Ta) and titanium (Ti) are ideal materials for interbody cages because of their biocompatibility, particularly when they are incorporated into a three-dimensional (3D) porous structure. We conducted an in vitro investigation of the cell attachment and osteogenic markers of self-fabricated uniform porous Ti (20%, 40%, 60%, and 80%), nonporous Ti, and porous Ta cages (n = 6) in each group. Cell attachment, osteogenic markers, and alkaline phosphatase (ALP) were measured. An in vivo study was performed using a pig-posterior-instrumented anterior interbody fusion model to compare the porous Ti (60%), nonporous Ti, and porous Ta interbody cages in 12 pigs. Implant migration and subsidence, determined using plain radiographs, were recorded before surgery, immediately after surgery, and at 1, 3, and 6 months after surgery. Harvested implants were assessed for bone ingrowth and attachment. Relative to the 20% and 40% porous Ti cages, the 60% and 80% cages achieved superior cellular migration into cage pores. Among the cages, osteogenic marker and ALP activity levels were the highest in the 60% porous Ti cage, osteocalcin expression was the highest in the nonporous Ti cage, and the 60% porous Ti cage exhibited the lowest subsidence. In conclusion, the designed porous Ti cage is biocompatible and suitable for lumbar interbody fusion surgery and exhibits faster fusion with less subsidence compared with porous Ta and nonporous Ti cages.The purpose of this review is to put previous research findings on acetylated wood and the fabrication of veneer-based products in a common context. The first research on wood acetylation was already conducted in the 1920s using wood meal, whereas relevant research on veneer acetylation was published nearly two decades later, during the 1940s. In the years that followed, a great deal of research has been done on both solid wood and composite acetylation. Developments in the 1990s and early 2000s resulted in the creation of commercial products. Nowadays, wood is becoming increasingly popular in construction. Therefore, high-performance materials with high dimensional stability and durability are required. Veneers are thereby of particular relevance because of their propensity to absorb chemicals into even tough-to-treat wood species. However, acetylation alters the bonding properties of wood, which is important for the manufacture of engineered veneer products, especially in load-bearing construction. A large amount of research is now being conducted on the acetylation of veneer, and acetylated veneer products are anticipated in the near future.

Autoři článku: Hartvigodom6336 (Hinrichsen Voigt)