Johannesencorneliussen2687

Z Iurium Wiki

Verze z 21. 9. 2024, 14:02, kterou vytvořil Johannesencorneliussen2687 (diskuse | příspěvky) (Založena nová stránka s textem „Terpenoids, also known as isoprenoids, are a broad and diverse class of plant natural products with significant industrial and pharmaceutical importance. M…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Terpenoids, also known as isoprenoids, are a broad and diverse class of plant natural products with significant industrial and pharmaceutical importance. Many of these natural products have antitumor, anti-inflammatory, antibacterial, antiviral, and antimalarial effects, support transdermal absorption, prevent and treat cardiovascular diseases, and have hypoglycemic activities. Production of these compounds are generally carried out through extraction from their natural sources or chemical synthesis. However, these processes are generally unsustainable, produce low yield, and result in wasting of substantial resources, most of them limited. Microbial production of terpenoids provides a sustainable and environment-friendly alternative. In recent years, the yeast Saccharomyces cerevisiae has become a suitable cell factory for industrial terpenoid biosynthesis due to developments in omics studies (genomics, transcriptomics, metabolomics, proteomics), and mathematical modeling. Besides that, fermentation development has a significant importance on achieving high titer, yield, and productivity (TYP) of these compounds. Up to now, there have been many studies and reviews reporting metabolic strategies for terpene biosynthesis. However, fermentation strategies have not been yet comprehensively discussed in the literature. This review summarizes recent studies of recombinant production of pharmaceutically important terpenoids by engineered yeast, S. cerevisiae, with special focus on fermentation strategies to increase TYP in order to meet industrial demands to feed the pharmaceutical market. Factors affecting recombinant terpenoids production are reviewed (strain design and fermentation parameters) and types of fermentation process (batch, fed-batch, and continuous) are discussed.Coronavirus disease 19 (COVID-19) is a virus that spreads through contact with the respiratory droplets of infected persons, so quarantine is mandatory to break the infection chain. This paper proposes a wearable device with the Internet of Things (IoT) integration for real-time monitoring of body temperature the indoor condition via an alert system to the person in quarantine. The alert is transferred when the body thermal exceeds the allowed threshold temperature. Moreover, an algorithm Repetition Spikes Counter (RSC) based on an accelerometer is employed in the role of human activity recognition to realize whether the quarantined person is doing physical exercise or not, for auto-adjustment of threshold temperature. The real-time warning and stored data analysis support the family members/doctors in following and updating the quarantined people's body temperature behavior in the tele-distance. The experiment includes an M5stickC wearable device, a Microelectromechanical system (MEMS) accelerometer, an infrared thermometer, and a digital temperature sensor equipped with the user's wrist. The indoor temperature and humidity are measured to restrict the virus spread and supervise the room condition of the person in quarantine. The information is transferred to the cloud via Wi-Fi with Message Queue Telemetry Transport (MQTT) broker. The Bluetooth is integrated as an option for the data transfer from the self-isolated person to the electronic device of a family member in the case of Wi-Fi failed connection. The tested result was obtained from a student in quarantine for 14 days. The designed system successfully monitored the body temperature, exercise activity, and indoor condition of the quarantined person that handy during the Covid-19 pandemic.Thermo-responsive nanoparticles (NPs), i.e., colloids with a sharp and often reversible phase separation in response to thermal stimuli, are coming to the forefront due to their dynamic behavior, useful in applications ranging from biomedicine to advanced separations and smart optics. What is guiding the macroscopic behavior of these systems above their critical temperature is mainly the microstructure of the polymer chains of which these NPs are comprised. Therefore, a comprehensive understanding of the influence of the polymer properties over the thermal response is highly required to reproducibly target a specific behavior. In this study, we synthesized thermo-responsive NPs with different size, polymeric microstructure and hydrophilic-lipophilic balance (HLB) and investigated the role of these properties over their phase separation. We first synthesized four different thermo-responsive oligomers via Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization of poly(ethylene glycol)methyl ether methacrylate. Then, exploiting the RAFT living character, we chain-extended these oligomers with butyl methacrylate obtaining a library of NPs. Finally, we investigated the NP thermo-responsive behavior, their physical state above the cloud point (Tcp) as well as their reversibility once the stimulus is removed. We concluded that the solid content plays a minor role compared to the relative length of the two blocks forming the polymer chains. FIIN-2 chemical structure In particular, the longer the stabilizer, the more favored the formation of a gel. At the same time, the reversibility is mainly achieved at high HLB, independently from the absolute lengths of the block copolymers.Rosuvastatin (RST) is primarily used to treat high cholesterol levels. As it has potentially harmful but not well-documented effects on embryos, RST is contraindicated during pregnancy. To demonstrate whether RST could induce molecular epigenetic events in the brains of newborn rats, pregnant mothers were treated daily with oral RST from the 11th day of pregnancy for 10 days (or until delivery). On postnatal day 1, the brains of the control and RST-treated rats were removed for Western blot or immunohistochemical analyses. Several antibodies that recognize different methylation sites for H2A, H2B, H3, and H4 histones were quantified. Analyses of cell-type-specific markers in the newborn brains demonstrated that prenatal RST administration did not affect the composition and cell type ratios as compared to the controls. Prenatal RST administration did, however, induce a general, nonsignificant increase in H2AK118me1, H2BK5me1, H3, H3K9me3, H3K27me3, H3K36me2, H4, H4K20me2, and H4K20me3 levels, compared to the controls. Moreover, significant changes were detected in the number of H3K4me1 and H3K4me3 sites (134.3% ± 19.2% and 127.8% ± 8.5% of the controls, respectively), which are generally recognized as transcriptional activators. Fluorescent/confocal immunohistochemistry for cell-type-specific markers and histone methylation marks on tissue sections indicated that most of the increase at these sites belonged to neuronal cell nuclei. Thus, prenatal RST treatment induces epigenetic changes that could affect neuronal differentiation and development.The purpose of this study is to understand the functional status distribution and to explore the factors associated with changes in functional status and social participation in people with depression using two-year follow-up data. Subjects were selected from the Taiwan Databank of Persons with Disabilities (TDPD) if they had an evaluation date between July 2012 and 31 December 2017. We used data for 1138 individuals with multiple evaluation records and who were diagnosed with depression. The WHO Disability Assessment Schedule 2.0 (WHODAS 2.0) was the primary functional status measure. Other factors selected from the TDPD included social demographic data, living situation, employment status, economic status, and educational level. The results show scores in all dimensions of the WHODAS 2.0 declined over two years, especially in the domains of cognition, household activities, social participation, and total WHODAS 2.0 score. Aging groups showed poor recovery in cognition, getting along with others, and household activities. People living in suburban areas showed poorer recovery than people living in rural and urban areas in cognition, self-care, and general function (total score of WHODAS 2.0). Employment was also strongly associated with functional recovery in household activities, social participation, and general function. The original scores for cognition and getting along with others showed a significant negative relationship with social participation improvement. Our results can be used by policy makers to provide resources and conduct investigations, and by clinicians when making rehabilitation plans.Access to pure water is a very topical issue today. Desalination represents a promising way of obtaining drinking water in areas of shortage. Currently, efforts are being made to replace the metal components of existing desalination units due to the high corrosivity of sea water. Another requirement is easy transportation and assembly. The presented solution combines two types of polymeric hollow fibers that are used to create the distillation unit. Porous polypropylene hollow fiber membranes have been used as an active surface for mass transfer in the distillation unit, while non-porous thermal polypropylene hollow fibers have been employed in the condenser. The large active area to volume ratio of the hollow fiber module improves the efficiency of both units. Hot water is pumped inside the membranes in the distillation unit. Evaporation is first observed at a temperature gradient of 10 °C. The water vapor flows through the tunnel to the condenser where cold water runs inside the fibers. The temperature gradient causes condensation of the vapor, and the condensate is collected. The article presents data for hot water at temperatures of 55, 60, and 65 °C. Optimization of the membrane module is evaluated and presented.Hypoxic-ischemic encephalopathy (HIE) is a devastating neonatal brain condition caused by lack of oxygen and limited blood flow. Environmental enrichment (EE) is a classic paradigm with a complex stimulation of physical, cognitive, and social components. EE can exert neuroplasticity and neuroprotective effects in immature brains. However, the exact mechanism of EE on the chronic condition of HIE remains unclear. HIE was induced by a permanent ligation of the right carotid artery, followed by an 8% O2 hypoxic condition for 1 h. At 6 weeks of age, HIE mice were randomly assigned to either standard cages or EE cages. In the behavioral assessments, EE mice showed significantly improved motor performances in rotarod tests, ladder walking tests, and hanging wire tests, compared with HIE control mice. EE mice also significantly enhanced cognitive performances in Y-maze tests. Particularly, EE mice showed a significant increase in Cav 2.1 (P/Q type) and presynaptic proteins by molecular assessments, and a significant increase of Cav 2.1 in histological assessments of the cerebral cortex and hippocampus. These results indicate that EE can upregulate the expression of the Cav 2.1 channel and presynaptic proteins related to the synaptic vesicle cycle and neurotransmitter release, which may be responsible for motor and cognitive improvements in HIE.Monocytes/macrophages and vascular smooth muscle cells (vSMCs) are the main cell types implicated in atherosclerosis development, and unlike other mature cell types, both retain a remarkable plasticity. In mature vessels, differentiated vSMCs control the vascular tone and the blood pressure. In response to vascular injury and modifications of the local environment (inflammation, oxidative stress), vSMCs switch from a contractile to a secretory phenotype and also display macrophagic markers expression and a macrophagic behaviour. Endothelial dysfunction promotes adhesion to the endothelium of monocytes, which infiltrate the sub-endothelium and differentiate into macrophages. The latter become polarised into M1 (pro-inflammatory), M2 (anti-inflammatory) or Mox macrophages (oxidative stress phenotype). Both monocyte-derived macrophages and macrophage-like vSMCs are able to internalise and accumulate oxLDL, leading to formation of "foam cells" within atherosclerotic plaques. Variations in the levels of nitric oxide (NO) can affect several of the molecular pathways implicated in the described phenomena.

Autoři článku: Johannesencorneliussen2687 (Hesselberg Ramsey)