Fengerhopkins5148

Z Iurium Wiki

Verze z 20. 9. 2024, 23:12, kterou vytvořil Fengerhopkins5148 (diskuse | příspěvky) (Založena nová stránka s textem „Here, we summarize these data including the available immunoquantification or mRNA levels of DMET proteins (healthy vs disease states) in extrahepatic tiss…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Here, we summarize these data including the available immunoquantification or mRNA levels of DMET proteins (healthy vs disease states) in extrahepatic tissue and discuss the potential applications of DMET abundance data in enhancing the capability of PBPK modeling in predicting drug disposition across disease states. Successful examples of PBPK modeling that integrate differences in DMET proteins between healthy and disease states are discussed.Since 2016, results from physiologically based pharmacokinetic (PBPK) analyses have been routinely found in the clinical pharmacology section of regulatory applications submitted to the US Food and Drug Administration (FDA). In 2018, the Food and Drug Administration's Office of Clinical Pharmacology published a commentary summarizing the application of PBPK modeling in the submissions it received between 2008 and 2017 and its impact on prescribing information. In this commentary, we provide an update on the application of PBPK modeling in submissions received between 2018 and 2019 and highlight a few notable examples.Kidney disease affects pharmacokinetic (PK) profiles of not only renally cleared drugs but also nonrenally cleared drugs. learn more The impact of kidney disease on drug disposition has not been fully elucidated, but describing the extent of such impact is essential for conducting dose optimization in kidney disease. Accurate evaluation of kidney function has been a clinical interest for dose optimization, and more scientists pay attention and conduct research for clarifying the role of drug transporters, metabolic enzymes, and their interplay in drug disposition as kidney disease progresses. Physiologically based pharmacokinetic (PBPK) modeling and simulation can provide valuable insights for dose optimization in kidney disease. It is a powerful tool to integrate discrete knowledge from preclinical and clinical research and mechanistically investigate system- and drug-dependent factors that may contribute to the changes in PK profiles. PBPK-based prediction of drug exposures may be used a priori to adjust dosing regimens and thereby minimize the likelihood of drug-related toxicity. With real-time clinical studies, parameter estimation may be performed with PBPK approaches that can facilitate identification of sources of interindividual variability. PBPK modeling may also facilitate biomarker research that aids dose optimization in kidney disease. U.S. Food and Drug Administration guidances related to conduction of PK studies in kidney impairment and PBPK documentation provide the foundation for facilitating model-based dose-finding research in kidney disease.Antibody therapeutics continue to represent a significant portion of the biotherapeutic pipeline, with growing promise for bispecific antibodies (BsAbs). BsAbs can target 2 different antigens at the same time, such as simultaneously binding tumor-cell receptors and recruiting cytotoxic immune cells. This simultaneous engagement of 2 targets can be potentially advantageous, as it may overcome disadvantages posed by a monotherapy approach, like the development of resistance to treatment. Combination therapy approaches that modulate 2 targets simultaneously offer similar advantages, but BsAbs are more efficient to develop. Unlike combination approaches, BsAbs can facilitate spatial proximity of targets that may be necessary to induce the desired effect. Successful development of BsAbs requires understanding antibody formatting and optimizing activity for both targets prior to clinical trials. To realize maximal efficacy, special attention is required to fully define pharmacokinetic (PK)/pharmacodynamic (PD) relationships enabling selection of dose and regimen. The application of physiologically based pharmacokinetics (PBPK) has been evolving to inform the development of novel treatment modalities such as bispecifics owing to the increase in our understanding of pharmacology, utility of multiscale models, and emerging clinical data. In this review, we discuss components of PBPK models to describe the PK characteristics of BsAbs and expand the discussion to integration of PBPK and PD models to inform development of BsAbs. A framework that can be adopted to build PBPK-PD models to inform the development of BsAbs is also proposed. We conclude with examples that highlight the application of PBPK-PD and share perspectives on future opportunities for this emerging quantitative tool.The conventional approach to approximating the pharmacokinetics of drugs in patients with chronic kidney disease (CKD) only accounts for changes in the estimated glomerular filtration rate. However, CKD is a systemic and multifaceted disease that alters many body systems. Therefore, the objective of this exercise was to develop and evaluate a whole-body mechanistic approach to predicting pharmacokinetics in patients with CKD. Physiologically based pharmacokinetic models were developed in PK-Sim v8.0 (www.open-systems-pharmacology.org) to mechanistically represent the disposition of 7 compounds in healthy human adults. The 7 compounds selected were eliminated by glomerular filtration and active tubular secretion by the organic cation transport system to varying degrees. After a literature search, the healthy adult models were adapted to patients with CKD by numerically accounting for changes in glomerular filtration rate, kidney volume, renal perfusion, hematocrit, plasma protein concentrations, and gastrointestinal transit. Literature-informed interindividual variability was applied to the physiological parameters to facilitate a population approach. Model performance in CKD was evaluated against pharmacokinetic data from 8 clinical trials in the literature. Overall, integration of the CKD parameterization enabled exposure predictions that were within 1.5-fold error across all compounds and patients with varying stages of renal impairment. Notable improvement was observed over the conventional approach to scaling exposure, which failed in all but 1 scenario in patients with advanced CKD. Further research is required to qualify its use for first-in-CKD dose selection and clinical trial planning for a wider selection of renally eliminated compounds, including those subject to anion transport.

Autoři článku: Fengerhopkins5148 (Nymann Christie)