Melvinryberg9884

Z Iurium Wiki

Verze z 20. 9. 2024, 21:37, kterou vytvořil Melvinryberg9884 (diskuse | příspěvky) (Založena nová stránka s textem „Climate change is affecting the growth and distribution of trees in the Chinese boreal forest. Such changes in China, the southern terminus of the extensiv…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Climate change is affecting the growth and distribution of trees in the Chinese boreal forest. Such changes in China, the southern terminus of the extensive Eurasian boreal forests, reflect on the changes that could occur further north under a warming climate. Most studies have found that tree growth increases with increasing temperature and precipitation in boreal forests, but there is little observational evidence of the climate thresholds that might slow these growth rates at the more extreme temperatures which are predicted to occur under future global warming. Here, we examine growth responses of this dominant boreal tree species (Larix gmelinii) to climate based on the data from plantation sample plots across a broad region (40° 51'-52° 58'N, 118° 12'E-133° 42'E) in northeast China. ISA2011B From statistically significant fits to quadratic equations, temperature and precipitation are the important climatic factors determining tree growth in L. gmelinii plantations at two age classes ( less then 10 year and 10-30 year-old stands). The maximum rates of tree height and diameter at breast height (DBH) were about 0.53 m/year and 0.46 cm/year at less then 10 year stands, and about 0.63 m/year and 0.60 cm/year at 10-30 year stands, respectively. For stands with the highest values of mean annual increment (MAI), the corresponding optimal mean annual temperature (MATopt) focused between 0.66 °C and 1.57 °C. The optimal mean annual precipitation (MAPopt) between 663 mm and 708 mm produced the maximal growth increments. With mean annual temperature of -2.4 °C and precipitation of 470 mm averaged over 1954-2005 in Chinese boreal forest region as baseline, we conservatively estimated that trees in Chinese boreal forest appear to have higher growth potentials with the maximum temperature increase of 3.6 °C and precipitation increase of 40%.Mudflats are highly productive coastal ecosystems that are dominated by halophytic vegetation. In this study, the mudflat sediment microbiome was investigated from Nalabana Island, located in a brackish water coastal wetland of India; Chilika, based on the MinION shotgun metagenomic analysis. Bacterial, archaeal, and fungal communities were mostly composed of Proteobacteria (38.3%), Actinobacteria (20.7%), Euryarchaeota (76.1%), Candidatus Bathyarchaeota (6.8%), Ascomycota (47.2%), and Basidiomycota (22.0%). Bacterial and archaeal community composition differed significantly between vegetated mudflat and un-vegetated bulk sediments. Carbon, nitrogen, sulfur metabolisms, oxidative phosphorylation, and xenobiotic biodegradation were the most common microbial functionalities in the mudflat metagenomes. Furthermore, genes involved in oxidative stresses, osmotolerance, secondary metabolite synthesis, and extracellular polymeric substance synthesis revealed adaptive mechanisms of the microbiome in mudflat habitat. to halophytes. These ecosystem services of the mudflat microbiome must be considered in the conservation and management plan of coastal wetlands. This study also advanced our understanding of fungal diversity which is understudied from the coastal lagoon ecosystems.Timely and accurate monitoring of the spatiotemporal changes in drought is very important for the reduction in the social losses caused by drought. The Optimized Meteorological Drought Index (OMDI), originally established in southwestern China, showed great potential for drought monitoring over large regions on a large scale. However, the applicability of the index requires further evaluation, especially when used throughout China, which has a different agricultural divisions, variable climatic conditions, complex terrain and diverse land cover. In addition, the OMDI model relies on training data to construct local parameters for the model. On a large scale, it is of great significance to use multisource remote sensing data sets to construct OMDI model parameters. In this paper, the constrained optimization method was used to establish weights for the MODIS-derived Vegetation Conditional Index (VCI), TRMM-derived Precipitation Condition Index (PCI), and GLDAS-derived Soil Moisture Condition Index (SMCI) and c the degree of drought fluctuates little; The linear tendency rate is 0.0004, and the area greater than 0 reaches 66.44%, indicating that the drought is developing in a lightning trend. (4) The Hurst index value is mostly higher than 0.5 (the area ratio is 56.31%), and the area of "Positive-Consistent" and "Negative- Opposite" accounted for 54.02%, indicating that more than half of China's area drought changes will show a trend of mitigation in the future.Investigation of in-situ mobilization of both nitrogen (N) and phosphate (PO43-) in sediment is important for lake management strategy. In this paper, diffusion gradients in thin films (DGT) and DGT induced flux in sediments (DIFS) model are newly designed for in-situ measurement of iron (Fe), PO43-, nitrate (NO3-N) and ammonium (NH4-N), and nutrients' mobility in sediment in Lake Nanhu (China). According to DGT profiles together with physicochemical properties in sediment, (I) PO43- is released from (i) Fe-bound P plus loosely sorbed P in anoxic sediment and (ii) the loosely sorbed P in oxic sediment; (II) anoxic sediment inhibits nitrification and NO3-N release, but it favors denitrification and dissimilatory nitrate reduction to ammonium (DNRA), leading to NH4-N release; (III) Eh and organic matter are two key influence factors on mobility of PO43-, NO3-N and NH4-N. According to DIFS calculation, the dynamics of desorption and diffusion at two sites belong to (i) slow rate of resupply and (ii) fast resupply cases, respectively. Internal loadings are estimated to be 92.74 (PO43-), 268.1 (NH4-N) and -2466 kg a-1 (NO3-N), which reflects sediment mainly acts as a source for PO43- and NH4-N, and a sink for NO3-N in water. Based on sediment P release risk index (SPRRI), P release risks in lake sediments are estimated, ranging from light to relative high level. DGT and SPRRI aid choice of restoration methods for sediment, including sediment dredging, phytoremediation and in-situ inactivation.

Autoři článku: Melvinryberg9884 (Lind Cox)