Vestergaardbanke6613
As a result, the stretched-dried-films showed a high tensile strength owing to strain-induced crystallization.Low mechanical strength and untargeted osteoinduction of chitosan hydrogel limit its application for bone regeneration. This study aimed to develop an injectable chitosan hydrogel with enhanced mechanical strength and improved osteoinductivity for bone tissue engineering. For this purpose, chitosan-modified halloysite nanotubes (mHNTs) were synthesized first. Then, icariin as a bone inducer was loaded into mHNTs (IC@mHNTs), resulting in a sustained drug release system. Further, nanocomposite chitosan/mHNTs hydrogels were prepared by the sol-gel transition, leading to decreased gelation time and temperature and enhanced mechanical strength of the resulting scaffolds. The mesenchymal stem cells were encapsulated into the hydrogels, and in vitro viability assays showed scaffold biocompatibility. Moreover, embedded mHNTs or IC@mHNTs in the scaffold resulted in enhanced proliferation and bone differentiation of encapsulated cells. It was collectively demonstrated that the injectable in situ forming nanocomposite chitosan hydrogel loaded with IC@mHNTs is a promising candidate for bone regeneration.Promotion of promising cellulose nanocrystals (CNC) is largely dependent on the relationship between their morphology, surface chemical composition, and supramolecular structure with toxicity, hemocompatibility, and biodegradability. This paper outlines comparative and integrated analysis of the mentioned biocompatibility aspects of partially acetylated rod-, and disc-lake morphology of CNC with crystalline cellulose allomorphs I and II. These data have also included the study of CNC obtained from the sulfuric acid solutions. The aqueous solution of all types of tested CNC has not been toxic to mice after oral administration. Morphology of internal organs has not changed. However, in case of disc-like particles, the kidney mass coefficient noticeably changed. CNC have neither triggered platelet aggregation nor destroyed the red cell membrane. Intravenous administration to rabbits has not affected the plasma clotting time. Rod-like CNC are more resistant, and the disc-like particles are more susceptible to degradation under the influence of cellulases.Traditional preparation methods of the hydrogel are not only tedious but also requiring external stimuli. Here, a plant catechol-inspired self-catalytic system (sulfonated lignin and iron ion) has been introduced to rapidly trigger the graft polymerization of vinyl monomers on the carboxymethyl xylan (CMX) at room temperature, generating an elastic, UV-shield, and conductive hydrogel. The rapid preparation process can be finished at room temperature in 5 min without the removal of oxygen. The hydrogel shows charming extension ratio (up to 460%) and tensile stress (up to 23 kPa), which can be ascribed to the double network structure constructed from Fe3+ and CMX. The hydrogel exhibits great transparency (up to 85.37%), fascinating UV-blocking (up to 99%), and conductive features, thereby serving as potential human body sensors. The rapid preparation of xylan-derived hydrogels via dynamic lignin catechol chemistry may open up a new approach to high-valued utilization of biomass.Two C1/C4-oxidizing AA9 lytic polysaccharide monooxygenases (AA9 LPMOs), AoLPMO9A and AoLPMO9B, and one C4-oxidizing AoLPMO9C from Aspergillus oryzae, were characterized and compared with the well-studied C4-oxidizing NcLPMO9C. NcLPMO9C and AoLPMO9C harboring carbohydrate-binding module 1 (CBM1) exhibited much stronger adsorption capacity than AoLPMO9A and B without CBM1. The binding affinity is crucial for the efficacy of H2O2 as cosubstrate and oxidative activity of AA9 LPMOs on crystalline cellulose. C4-oxidizing AA9 LPMOs had a striking boosting effect on cellobiohydrolase I (CBHI), while C1/C4-oxidizing AA9 LPMOs boosted CBHII and endoglucanase I (EGI) activity. Our results indicated that two types of AA9 LPMOs with different modularities and regioselectivities varied in cellulose adsorption, H2O2-driven activity and synergy with cellulase on celluloses of different crystallinity which could complement each other in lignocellulose degradation. C4-oxidizing AA9 LPMOs with CBM1 were particularly essential in cellulase cocktail due to high H2O2-driven activity and a striking boosting effect on CBHI.Three linear dextrins (LDs) with different chain length were obtained through fractionating short-chain LD by gradient precipitation with 65%, 70% and 75% alcohol, signed as 65LD, 70LD, and 75LD, respectively. The LDs were employed to encapsulate arachidonic acid (ARA) and geranic acid (GA). Fourier infrared spectrometry, differential scanning calorimetry and thermogravimetric analysis confirmed the formation of ARA/LD and GA/LD composites. The ARA/65LD and GA/75LD composites showed higher crystallinity, indicating the formation of more ordered and compact structures in ARA/65LD and GA/75LD composites. The micromorphology of ARA/65LD composite was a clear ellipsoidal like structure, whereas GA/75LD composite presented a spherical shape. The release behavior, thermal, photochemical and antioxidant abilities of ARA and GA were improved after forming composites. Overall, the longer chain LD displayed better encapsulation efficiency with the longer chain ARA, while the shorter chain LD had higher encapsulation capability with GA.Breast cancer stem cell (BCSC) properties are correlated with the malignancy of tumor cells. Sulforaphane (SFN), a natural isothiocyanate, has anti-cancer effects. However, SFN is an oil-like, hydrophobic and unstable substance. To enhance the inhibitory effect of SFN on BCSC-like properties, the mineralized hyaluronic acid-SS-tetradecyl nano-carriers (M-HA-SS-TA) were prepared. The nano-carriers possessed high SFN entrapment rate (92.36%) and drug-loading efficiency (33.64%). The carriers were responsive to the high reducing and mild acidic tumor micro-environment, leading to rapid SFN releasing from SFN-loaded nano-drug (SFN/M-HA-SS-TA). Through the specific recognition of breast cancer cells bearing CD44+ by HA, M-HA-SS-TA nano-carriers showed excellent tumor-targeting ability. Moreover, compared with free SFN, SFN/M-HA-SS-TA showed much stronger inhibition on the BCSC-like properties (invasiveness, self-renewal and tumor growth) both in vitro and in vivo. Together, these results suggested M-HA-SS-TA nano-carriers were promising platforms for tumor-targeted delivery of SFN, enhancing the therapeutic efficacy against BCSC-like properties by SFN.Ca(II)-alginate beads are being produced for a broad spectrum of biotechnological uses. Despite the simplicity of their manufacturing process, in these highly complex arrangements, the final properties of the material strongly depend on the supramolecular scaffolding. Here we present a cost-effective automatized Optical Video Microscopy approach for in situ evaluation of the kinetics of alginate bead formation. With simple mathematic modeling of the acquired data, we obtained key parameters that reveal valuable information on the system the time course of gel-front migration correlates with the plateau of the storage module, and total volume shrinkage is highly related to the stabilization of shear strain and shear stress at the yield point. Our results provide feasible and reproducible tools, which allow for a better interpretation of bead formation kinetics and a rapid screening technique to use while designing gelling materials with specific properties for technological applications.Cyclodextrins (CDs) are edible and biocompatible natural cyclic compounds that can encapsulate essential oils, flavours, volatile aroma compounds, and other substances. Complexation with CD-based materials improves the solubility and stability of volatile compounds and protects the bioactivity of the core materials. Therefore, the development of CD/volatile compound nanosystems is a key research area in the food, cosmetic, and pharmaceutical industries. This review briefly introduces the main types of natural CD; preparation methods of CD-based materials as carriers for aromatic substances or essential oils; characterisation methods used to calculate the interaction between CDs and volatile aroma compounds; molecular docking and simulation methods; and the application of CD-based nanosystems in different industries. The review aims to provide guidance for relevant practitioners in selecting appropriate CD materials and characterisation methods.Bio-based aerogel (polysaccharide cryogel) have led to a growing interest because of eco-friendliness, sustainability and excellent thermal insulation properties. Herein, we report an eco-friendly strategy to construct lightweight and porous sodium alginate/carboxymethyl cellulose/chitosan polysaccharide-based composite aerogels (SCC-B) by freeze-drying and post-cross-linking technology. The ester cross-linking of polysaccharide component achieved strong web-like entangled structure when using 1,2,3,4-butanetetracarboxylic acid and sodium hypophosphite as eco-friendly co-additives, meanwhile significantly improved flame retardancy of SCC-B due to phosphorylation. The thermal kinetic behavior of SCC-B was investigated by Flynn-Wall-Ozawa and Kissinger models. Results indicated that peak heat release rate and total heat release of SCC-B decreased from 30 W/g to 20 W/g and 15 kJ/g to 10 kJ/g, respectively. GSK-3 activation Furthermore, the second-degree burn time of SCC-B reached up to 87.1 s under heat exposure of 11.3 kW/m2. These characteristics combine to suggest hopeful prospects for use of SCC-B in the fields of fire-protection clothing as a renewable flame-retardant material.Glycosaminoglycan HnFG was extracted from sea cucumber Holothuria nobilis. Its chemical structure was characterized by analyzing the physicochemical properties, oligosaccharides from its mild acid hydrolysates and depolymerized products. The disaccharide d-GalNAc4S6S-α1,2-l-Fuc3S-ol found in its mild acid hydrolysates provided a clue for the presence of a unique disaccharide-branch in HnFG. Furthermore, it was confirmed by a series of oligosaccharides from the low-molecular weight HnFG prepared by β-eliminative depolymerization. Combining with the analysis of its peroxide depolymerized products, the precise structure of HnFG was determined A chondroitin sulfate E (CS-E)-like backbone branched with sulfated monofucoses (~67%) and disaccharides d-GalNAcS-α1,2-l-Fuc3S (~33%) at O-3 position of each GlcUA. This is the first report on the novel branches in glycosaminoglycan. Biologically, the native and depolymerized HnFG showed potent activities in prolonging the activated partial thrombin time (APTT) and inhibiting intrinsic coagulation Xase (iXase), whereas the oligosaccharides (degree of polymerization ≤6) had no obvious effects.Natural polysaccharide as the third abundant biomacromolecule has attracted considerable attentions due to their superior anti-tumor activities. However, the anti-tumor mechanism of polysaccharides has not been completely understood. Herein, the anti-tumor effects of black fungus polysaccharide (BFP), a typical β-glucan was comprehensively investigated, and the anti-tumor mechanism was obtained from metabolomics profiling. The in vitro results demonstrate that BFP inhibited the proliferation, migration and invasion of hepatoma carcinoma cells (HCC) through inducing the cell apoptosis and arresting the cell cycle at S phase without direct cytotoxicity. The hepatoma-bearing nude mice experiments further demonstrate that BFP could significantly inhibit the growth without system toxicity in vivo. Mass spectrometry-based metabolomics unveils that BFP significantly disturbed the multiple metabolic pathways, leading to the inhibition of tumor cells proliferation by promoting DNA damage, attenuating DNA damage repair, and inhibiting DNA synthesis.