Lomholtolson3797
The study here can provide a help in designing and construction of civil engineering in cold regions.This report is on the observation and analysis of nonlinear magnetoelectric effects (NLME) for in-plane currents perpendicularly to the hexagonal axis in single crystals and liquid phase epitaxy grown thin films of barium hexaferrite. Measurements involved tuning of ferromagnetic resonance (FMR) at 56-58 GHz in the multidomain and single domain states in the ferrite by applying a current. Data on the shift in the resonance frequency with input electric power was utilized to estimate the variations in the magnetic parameter that showed a linear dependence on the input electric power. The NLME tensor coefficients were determined form the estimated changes in the magnetization and uniaxial anisotropy field. The estimated NLME coefficients for in-plane currents are shown to be much higher than for currents flowing along the hexagonal axis. Although the frequency shift of FMR was higher for the single domain resonance, the multi-domain configuration is preferable for device applications since it eliminates the need for a large bias magnetic field. Thus, multidomain resonance with current in the basal plane is favorable for use in electrically tunable miniature, ferrite microwave signal processing devices requiring low operating power.We assessed the retinal microvascular alterations detected by optical coherence tomography angiography (OCT-A) in pediatric and juvenile craniopharyngioma (CP) patients with chiasmal compression. We included 15 eyes of 15 pediatric or juvenile CP patients and 18 eyes of 18 healthy subjects. The evaluation of vessel density from the superficial retinal capillary plexus (SRCP), the deep retinal capillary plexus, and the radial peripapillary capillary (RPC) segments was obtained by OCT-A. The association between vessel density measures and functional and structural measurements was also analyzed. There were significant reductions in the nasal sector of the SRCP (p less then 0.0001) and all sectors of the RPC segment vessel density (nasal, temporal, and superior; p less then 0.0001, inferior; p = 0.0015) in CP patients postoperatively compared to the healthy subjects. The peripapillary retinal nerve fiber layer (r = 0.6602, p = 0.0074) and ganglion cell-inner plexiform layer thicknesses (r = 0.7532, p = 0.0030) were associated with RPC segment vessel density. Visual acuity (r = - 0.5517, p = 0.0330) and temporal visual field sensitivity loss (r = 0.5394, p = 0.0465) showed an association with SRCP vessel density. In pediatric and juvenile patients with CP, parafoveal and peripapillary vascular changes following chiasmal compression were observed. The changes in vascular structures were closely related to structural and functional outcomes.Although the main route of infection for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the respiratory tract, liver injury is also commonly seen in many patients, as evidenced by deranged parenchymal liver enzymes. Furthermore, the severity of liver damage has been shown to correlate with higher mortality. Overall, the mechanism behind the liver injury remains unclear. We showed in this study that intra-hepatic bile duct cells could be grown using a human liver organoid platform. The cholangiocytes were not only susceptible to SARS-CoV-2 infection, they also supported efficient viral replication. We also showed that SARS-CoV-2 replication was much higher than SARS-CoV. Our findings suggested direct cytopathic viral damage being a mechanism for SARS-CoV-2 liver injury.Vascular smooth muscle cells are exposed to interstitial flow across aortic walls. Fluid shear stress changes the phenotype of smooth muscle cells to the synthetic type; hence, the fast interstitial flow might be related to aortic diseases. In this study, we propose a novel method to directly measure the interstitial flow velocity from the spatiotemporal changes in the concentration of a fluorescent dye. The lumen of a mouse thoracic aorta was filled with a fluorescent dye and pressurized in ex vivo. The flow of the fluorescent dye from the intimal to the adventitial sides was successfully visualized under a two-photon microscope. The flow velocity was determined by applying a one-dimensional advection-diffusion equation to the kymograph obtained from a series of fluorescent images. The results confirmed a higher interstitial flow velocity in the aortic walls under higher intraluminal pressure. A comparison of the interstitial flow velocity in the radial direction showed faster flow on the more intimal side, where hyperplasia is often found in hypertension. These results indicate that the proposed method can be used to visualize the interstitial flow directly and thus, determine the local interstitial flow velocity.Ocular cytomegalovirus (CMV) infections in immunocompetent individuals are rare, but its activation can cause chronic and relapsing inflammation in anterior segment of the eye resulting in loss of corneal clarity and glaucoma. Fifty five patients with anterior segment CMV infection were assessed for their clinical characteristics, and CMV corneal endotheliitis was found to cause significant loss of corneal endothelial cells. The disease duration with recurrences was significantly correlated with the maximum intraocular level of CMV DNA. To examine why CMV is activated in healthy immunocompetent individuals and causing corneal endothelial cell damage, assays of cytotoxic T cells (CTLs) which directly target infected corneal endothelial cells were performed for 9 HLA-matched CMV corneal endotheliitis patients (HLA-A*2402). When the cell loss was analyzed for associations with CTL responses, CMV-induced endothelial cell damage was mitigated by pp65-specific CTL induction. Dihydroethidium clinical trial The recurrence-free time was also prolonged by pp65-specific CTL induction (hazard ratio (HR) 0.93, P = 0.01). In contrast, IE1-specific CTL was associated with endothelial cell damage and reduced the time for corneal transplantation (HR 1.6, P = 0.003) and glaucoma surgery (HR 1.5, P = 0.001). Collectively, induction of pp65-specific CTL was associated with improved visual prognosis. However, IE1-specific CTL without proper induction of pp65-specific CTL can cause pathological damage leading to the need of surgical interventions.This study focuses on the contact regions among neighboring nanoparticles in polymer graphene nanocomposites by the extension of nanosheets. The resistance of graphene and the contact zones represent the total resistance of the prolonged nanosheets. Furthermore, the graphene size, interphase depth, and tunneling distance express the effective volume portion of graphene, while the onset of percolation affects the fraction of percolated nanosheets. Finally, a model is developed to investigate the conductivity of the samples using the graphene size, interphase depth, and tunneling size. In addition to the roles played by certain factors in conductivity, the experimental conductivity data for several samples confirm the conductivity predictions. Generally, the polymer sheet in tunnels determines the total resistance of the extended nanosheets because graphene ordinarily exhibits negligible resistance. In addition, a large tunnel positively accelerates the onset of percolation, but increases the tunneling resistance and attenuates the conductivity of the nanocomposite. Further, a thicker interphase and lower percolation threshold promote the conductivity of the system. The developed model can be applied to optimize the biosensors detecting the breast cancer cells.Among the snail genera most responsible for vectoring human-infecting schistosomes, Bulinus, Biomphalaria, and Oncomelania, the former is in many respects the most important. Bulinid snails host the most common human blood fluke, Schistosoma haematobium, responsible for approximately two-thirds of the estimated 237 million cases of schistosomiasis. They also support transmission of schistosomes to millions of domestic and wild animals. Nonetheless, our basic knowledge of the 37 Bulinus species remains incomplete, especially with respect to genome information, even including mitogenome sequences. We determined complete mitogenome sequences for Bulinus truncatus, B. nasutus, and B. ugandae, and three representatives of B. globosus from eastern, central, and western Kenya. A difference of the location of tRNA-Asp was found between mitogenomes from the three species of the Bulinus africanus group and B. truncatus. Phylogenetic analysis using partial cox1 sequences suggests that B. globosus is a complex comprised of multiple species. We also highlight the status of B. ugandae as a distinct species with unusual interactions with the S. haematobium group parasites deserving of additional investigation. We provide sequence data for potential development of genetic markers for specific or intraspecific Bulinus studies, help elucidate the relationships among Bulinus species, and suggest ways in which mitogenomes may help understand the complex interactions between Schistosoma and Bulinus snails and their relatives.The East Asian countries have experienced heavy rainfalls in boreal summer 2020. Here, we investigate the dynamical processes driving the rainfall extremes in East Asia during July and August. The Indian Ocean basin warming in June can be responsible for the anticyclonic anomalies in the western North Pacific (WNP), which modulate the zonally-elongated rainfalls in East Asia during July through an atmospheric Rossby wave train. In August, the East Asian rainfall increase is also related to the anticyclonic anomalies in the subtropical WNP, although it is located further north. The north tropical Atlantic warming in June partly contributes to the subtropical WNP rainfall decrease in August through a subtropical teleconnection. Then the subtropical WNP rainfall decrease drives the local anticyclonic anomalies that cause the rainfall increase in East Asia during August. The tropical Indian Ocean anomalously warmed in June and the subtropical WNP rainfall decreased in August 2020, which played a role in modulating the WNP anticyclonic anomalies. Therefore, the record-breaking rainfall extremes in East Asia that occurred during summer 2020 can be explained by the teleconnections associated with the tropical origins among the Indian, Pacific, and Atlantic Oceans and their interbasin interactions.Fish are amongst vertebrates the group with the highest diversity of known sex-determining genes. Particularly, the genus Oryzias is a suitable taxon to understand how different sex determination genetic networks evolved in closely related species. Two closely related species, O. latipes and O. curvinotus, do not only share the same XX/XY sex chromosome system, but also the same male sex-determining gene, dmrt1bY. We performed whole mRNA transcriptomes and morphology analyses of the gonads of hybrids resulting from reciprocal crosses between O. latipes and O. curvinotus. XY male hybrids, presenting meiotic arrest and no production of sperm were sterile, and about 30% of the XY hybrids underwent male-to-female sex reversal. Both XX and XY hybrid females exhibited reduced fertility and developed ovotestis while aging. Transcriptome data showed that male-related genes are upregulated in the XX and XY female hybrids. The transcriptomes of both types of female and of the male gonads are characterized by upregulation of meiosis and germ cell differentiation genes.