Meyerskragelund9492

Z Iurium Wiki

Verze z 20. 9. 2024, 21:29, kterou vytvořil Meyerskragelund9492 (diskuse | příspěvky) (Založena nová stránka s textem „3D in individuals of both groups with SVCL and MFCL wear. The training was more effective in myopes wearing their habitual SVCLs. This study shows that acc…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

3D in individuals of both groups with SVCL and MFCL wear. The training was more effective in myopes wearing their habitual SVCLs. This study shows that accommodation can be changed with short biofeedback training independent of the refractive state. With this proof-of-concept, we hypothesize that biofeedback training in myopic children wearing MFCLs might improve the treatment effectiveness.Grain boundaries in polycrystalline thin films with crystallite sizes at nanoscale presents regions characterized by a high degree of local structural disorder. As a consequence, great values of the associated local anisotropies are expected. On this regard, a systematic investigation of the effect of the grain boundary anisotropy on the magnetic properties in such type of nanostructured systems is addressed. For developing this work, a standard Monte Carlo simulation in the framework of classical Heisenberg spins was carried out, with a Hamiltonian involving exchange couplings, dipolar interactions, Zeeman interaction and contributions of cubic magneto-crystalline anisotropy. A quantification of local structural disorder was considered. Results revealed that i) by keeping the same number of grains, different organizations give rise to different spontaneous magnetizations, ii) the critical exponent of the magnetization differs of pure models, which is attributed to the complexity of the lattice and consistent with a distribution of critical temperatures, iii) Boundary anisotropy varies with temperature and its strength are determinant factors for blocking temperatures, and iv) Boundary anisotropy inside in the hysteretic properties where coercive field variations are observed.Leaching of nitrate from fertilisers diminishes nitrogen use efficiency (the portion of nitrogen used by a plant) and is a major source of agricultural pollution. To improve nitrogen capture, grasses such as brachiaria are increasingly used, especially in South America and Africa, as a cover crop, either via intercropping or in rotation. However, the complex interactions between soil structure, nitrogen and the root systems of maize and different species of forage grasses remain poorly understood. This study explored how soil structure modification by the roots of maize (Zea maize), palisade grass (Brachiaria brizantha cv. Marandu) and ruzigrass (Brachiaria ruziziensis) affected nitrate leaching and retention, measured via chemical breakthrough curves. All plants were found to increase the rate of nitrate transport suggesting root systems increase the tendency for preferential flow. The greater density of fine roots produced by palisade grass, subtly decreased nitrate leaching potential through increased complexity of the soil pore network assessed with X-ray Computed Tomography. A dominance of larger roots in ruzigrass and maize increased nitrate loss through enhanced solute flow bypassing the soil matrix. learn more These results suggest palisade grass could be a more efficient nitrate catch crop than ruzigrass (the most extensively used currently in countries such as Brazil) due to retardation in solute flow associated with the fine root system and the complex pore network.Neutrophil extracellular traps (NETs) have been implicated in atherothrombosis; however, their potential role as markers of risk is unclear. We investigated whether circulating NETs-related components associated with clinical outcome and hypercoagulability in ST-elevation myocardial infarction (STEMI). In this observational cohort study, STEMI patients admitted for PCI (n = 956) were followed for median 4.6 years, recording 190 events (reinfarction, unscheduled revascularization, stroke, heart failure hospitalization, or death). Serum drawn median 18 hours post-PCI was used to quantify double-stranded DNA (dsDNA) and the more specific NETs markers myeloperoxidase-DNA and citrullinated histone 3. Levels of the NETs markers did not differ significantly between groups with/without a primary composite endpoint. However, patients who died (n = 76) had higher dsDNA compared to survivors (p  less then  0.001). Above-median dsDNA was associated with an increased number of deaths (54 vs. 22, p  less then  0.001). dsDNA in the upper quartiles (Q) was associated with increased mortality (Q3 vs. Q1 + 2 adjusted HR 1.89 [95% CI 1.03 to 3.49], p = 0.041 and Q4 vs. Q1 + 2 adjusted HR 2.28 [95% CI 1.19 to 4.36], p = 0.013). dsDNA was weakly correlated with D-dimer (rs = 0.17, p  less then  0.001). dsDNA levels associated with increased all-cause mortality, yet weakly with hypercoagulability in STEMI patients. The prognostic significance of potentially NETs-related markers requires further exploration.Osteosarcoma (OSA) is the most common type of cancer that originates in the bone and usually occurs in young children. OSA patients were treated with neoadjuvant chemotherapy and surgery, and the results were disappointing. Marine antimicrobial peptides (AMPs) have been the focus of antibiotic research because they are resistant to pathogen infection. Piscidin-1 is an AMP from the hybrid striped bass (Morone saxatilis × M. chrysops) and has approximately 22 amino acids. Research has shown that piscidin-1 can inhibit bacterial infections and has antinociception and anti-cancer properties; however, the regulatory effects of piscidin-1 on mitochondrial dysfunction in cancer cells are still unknown. We aimed to identify the effects of piscidin-1 on mitochondrial reactive oxygen species (mtROS) and apoptosis in OSA cells. Our analyses indicated that piscidin-1 has more cytotoxic effects against OSA cells than against lung and ovarian cancer cells; however, it has no effect on non-cancer cells. Piscidin-1 induces apoptosis in OSA cells, regulates mtROS, reduces mitochondrial antioxidant manganese superoxide dismutase and mitochondrial transmembrane potential, and decreases adenosine 5'-triphosphate production, thus leading to mitochondrial dysfunction and apoptosis. The mitochondrial antioxidant, mitoTempo, reduces the apoptosis induced by piscidin-1. Results suggest that piscidin-1 has potential for use in OSA treatment.

Autoři článku: Meyerskragelund9492 (Norup Clemensen)