Mcleanthorpe2199
phenotype.
Neural-specific autoantibodies are not uncommon in patients with ICI-related CNS neurologic autoimmunity. JIB-04 Outcomes mostly depend on the pre-ICI treatment characteristics and clinical phenotype.
To describe short-term and 5-year rates of mortality and poor outcome in patients with spontaneous aneurysmal subarachnoid hemorrhage (aSAH) who received repair treatment.
In this prospective observational study, mortality and poor outcome (modified Rankin Scale score 3-6) were analyzed in 311 patients with aSAH at 3 months, 1 year, and 5 years follow-up. Sensitivity analysis was performed according to treatment modality. In-hospital and 5-year complications were analyzed.
Of 476 consecutive patients with spontaneous subarachnoid hemorrhage, 347 patients (72.9%) had aSAH. Of these, 311 (89.6%) were treated (242 endovascular, 69 neurosurgical), with a mean follow-up of 43.4 months (range, 1 to 145). Three-month, 1-year, and 5-year mortality was 18.4%, 22.9%, and 29.0%, and poor outcome was observed in 42.3%, 36.0%, and 36.0%, respectively. Adjusted poor outcome was lower in endovascular than in neurosurgical treatment at 3 months (odds ratio [OR] 0.36 [95% confidence interval [CI] 0.18-0.74]), with an abbecause endovascular coiling was not feasible.Receptor kinases with extracellular leucine-rich repeat domains (LRR-RKs) form the largest group of membrane signaling proteins in plants. LRR-RKs can sense small molecule, peptide, or protein ligands and may be activated by ligand-induced interaction with a shape complementary SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) coreceptor kinase. We have previously shown that SERKs can also form constitutive, ligand-independent complexes with the LRR ectodomains of BAK1-INTERACTING RECEPTOR-LIKE KINASE3 (BIR3) receptor pseudokinases, negative regulators of LRR-RK signaling. Here, we report that receptor chimera in which the extracellular LRR domain of BIR3 is fused to the cytoplasmic kinase domains of the SERK-dependent LRR-RKs BRASSINOSTEROID INSENSITIVE1, HAESA and ERECTA form tight complexes with endogenous SERK coreceptors in the absence of ligand stimulus. Expression of these chimeras under the control of the endogenous promoter of the respective LRR-RK leads to strong gain-of-function brassinosteroid, floral abscission, and stomatal patterning phenotypes, respectively. Importantly, a BIR3-GASSHO1 (GSO1)/SCHENGEN3 (SGN3) chimera can partially complement sgn3 Casparian strip formation phenotypes, suggesting that SERK proteins also mediate GSO1/SGN3 receptor activation. Collectively, our protein engineering approach may be used to elucidate the physiological functions of orphan LRR-RKs and to identify their receptor activation mechanism in single transgenic lines.Circadian clocks regulate growth and development in plants and animals, but the role of circadian regulation in crop production is poorly understood. Rice (Oryza sativa) grain yield is largely determined by tillering, which is mediated by physiological and genetic factors. Here we report a regulatory loop that involves the circadian clock, sugar, and strigolactone (SL) pathway to regulate rice tiller-bud and panicle development. Rice CIRCADIAN CLOCK ASSOCIATED1 (OsCCA1) positively regulates expression of TEOSINTE BRANCHED1 (OsTB1, also known as FC1), DWARF14 (D14), and IDEAL PLANT ARCHITECTURE1 (IPA1, also known as OsSPL14) to repress tiller-bud outgrowth. Downregulating and overexpressing OsCCA1 increases and reduces tiller numbers, respectively, whereas manipulating PSEUDORESPONSE REGULATOR1 (OsPPR1) expression results in the opposite effects. OsCCA1 also regulates IPA1 expression to mediate panicle and grain development. Genetic analyses using double mutants and overexpression in the mutants show that OsTB1, D14, and IPA1 act downstream of OsCCA1 Sugars repress OsCCA1 expression in roots and tiller buds to promote tiller-bud outgrowth. The circadian clock integrates sugar responses and the SL pathway to regulate tiller and panicle development, providing insights into improving plant architecture and yield in rice and other cereal crops.Chloroplasts mediate genetically controlled cell death via chloroplast-to-nucleus retrograde signaling. To decipher the mechanism, we examined chloroplast-linked lesion-mimic mutants of Arabidopsis (Arabidopsis thaliana) deficient in plastid division, thereby developing gigantic chloroplasts (GCs). These GC mutants, including crumpled leaf (crl), constitutively express immune-related genes and show light-dependent localized cell death (LCD), mirroring typical autoimmune responses. Our reverse genetic approach excludes any potential role of immune/stress hormones in triggering LCD. Instead, transcriptome and in silico analyses suggest that reactive electrophile species (RES) generated via oxidation of polyunsaturated fatty acids (PUFAs) or lipid peroxidation-driven signaling may induce LCD. Consistent with these results, the one of the suppressors of crl, dubbed spcrl4, contains a causative mutation in the nuclear gene encoding chloroplast-localized FATTY ACID DESATURASE5 (FAD5) that catalyzes the conversion of palmitic acid (160) to palmitoleic acid (161). The loss of FAD5 in the crl mutant might attenuate the levels of RES and/or lipid peroxidation due to the reduced levels of palmitic acid-driven PUFAs, which are prime targets of reactive oxygen species. The fact that fad5 also compromises the expression of immune-related genes and the development of LCD in other GC mutants substantiates the presence of an intrinsic retrograde signaling pathway, priming the autoimmune responses in a FAD5-dependent manner.UV-B light is a potential stress factor in plants, but how plants coordinate growth and UV-B stress responses is not well understood. Here, we report that brassinosteroid (BR) signaling inhibits UV-B stress responses in Arabidopsis (Arabidopsis thaliana) and various crops by controlling flavonol biosynthesis. We further demonstrate that BRI1-EMS-SUPPRESSOR 1 (BES1) mediates the tradeoff between plant growth and UV-B defense responses. BES1, a master transcription factor involved in BR signaling, represses the expression of transcription factor genes MYB11, MYB12, and MYB111, which activate flavonol biosynthesis. BES1 directly binds to the promoters of these MYBs in a BR-enhanced manner to repress their expression, thereby reducing flavonol accumulation. However, exposure to broadband UV-B down-regulates BES1 expression, thus promoting flavonol accumulation. These findings demonstrate that BR-activated BES1 not only promotes growth but also inhibits flavonoid biosynthesis. UV-B stress suppresses the expression of BES1 to allocate energy to flavonoid biosynthesis and UV-B stress responses, allowing plants to switch from growth to UV-B stress responses in a timely manner.