Wanghenderson7405

Z Iurium Wiki

Verze z 20. 9. 2024, 21:26, kterou vytvořil Wanghenderson7405 (diskuse | příspěvky) (Založena nová stránka s textem „Intercepted light use efficiency (LUEint plant dry weight per unit of intercepted PAR) increased by adding FR (8-23%). Neither specific leaf area nor net l…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Intercepted light use efficiency (LUEint plant dry weight per unit of intercepted PAR) increased by adding FR (8-23%). Neither specific leaf area nor net leaf photosynthetic rate was influenced by FR. We conclude that supplemental FR increased plant biomass production mainly by faster leaf area expansion, which increased light interception. The effects of FR on plant dry weight are stronger at low than at high planting density. Additionally, an increased LUEint may contribute to the increased biomass production.Exocyst is a heterooctameric protein complex crucial for the tethering of secretory vesicles to the plasma membrane during exocytosis. Compared to other eukaryotes, exocyst subunit EXO70 is represented by many isoforms in land plants whose cell biological and biological roles, as well as modes of regulation remain largely unknown. Here, we present data on the phospho-regulation of exocyst isoform EXO70C2, which we previously identified as a putative negative regulator of exocyst function in pollen tube growth. A comprehensive phosphoproteomic analysis revealed phosphorylation of EXO70C2 at multiple sites. We have now performed localization and functional studies of phospho-dead and phospho-mimetic variants of Arabidopsis EXO70C2 in transiently transformed tobacco pollen tubes and stably transformed Arabidopsis wild type and exo70C2 mutant plants. Our data reveal a dose-dependent effect of AtEXO70C2 overexpression on pollen tube growth rate and cellular architecture. We show that changes of the AtEXO70C2 phosphorylation status lead to distinct outcomes in wild type and exo70c2 mutant cells, suggesting a complex regulatory pattern. On the other side, phosphorylation does not affect the cytoplasmic localization of AtEXO70C2 or its interaction with putative secretion inhibitor ROH1 in the yeast two-hybrid system.Low-phosphorus stress (LPS) and pathogen attack are two important stresses frequently experienced by plants in their natural habitats, but how plant respond to them coordinately remains under-investigated. Here, we demonstrate that CaWRKY58, a known negative regulator of the pepper (Capsicum annuum) response to attack by Ralstonia solanacearum, is upregulated by LPS. Virus-induced gene silencing (VIGS) and overexpression of CaWRKY58 in Nicotiana benthamiana plants in combination with chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assays (EMSA) demonstrated that CaWRKY58 positively regulates the response of pepper to LPS by directly targeting and regulating genes related to phosphorus-deficiency tolerance, including PHOSPHATE STARVATION RESPONSE1 (PHR1). Yeast two-hybrid assays revealed that CaWRKY58 interacts with a 14-3-3 protein (Ca14-3-3); this interaction was confirmed by pull-down, bimolecular fluorescence complementation (BiFC), and microscale thermophoresis (MST) assays. The interaction between Ca14-3-3 and CaWRKY58 enhanced the activation of PHR1 expression by CaWRKY58, but did not affect the expression of the immunity-related genes CaNPR1 and CaDEF1, which are negatively regulated by CaWRKY58 in pepper upon Ralstonia solanacearum inoculation. Collectively, our data indicate that CaWRKY58 negatively regulates immunity against Ralstonia solanacearum, but positively regulates tolerance to LPS and that Ca14-3-3 transcriptionally activates CaWRKY58 in response to LPS.In many areas of the world, maintaining grapevine production will require adaptation to climate change. While rigorous evaluations of adaptation strategies provide decision makers with valuable insights, those that are published often overlook major constraints, ignore local adaptive capacity, and suffer from a compartmentalization of disciplines and scales. The objective of our study was to identify current knowledge of evaluation methods and their limitations, reported in the literature. We reviewed 111 papers that evaluate adaptation strategies in the main vineyards worldwide. Evaluation approaches are analyzed through key features (e.g., climate data sources, methodology, evaluation criteria) to discuss their ability to address climate change issues, and to identify promising outcomes for climate change adaptations. We highlight the fact that combining adaptation levers in the short and long term (location, vine training, irrigation, soil, and canopy management, etc.) enables local compromises to be reached between future water availability and grapevine productivity. The main findings of the paper are three-fold (1) the evaluation of a combination of adaptation strategies provides better solutions for adapting to climate change; (2) multi-scale studies allow local constraints and opportunities to be considered; and (3) only a small number of studies have developed multi-scale and multi-lever approaches to quantify feasibility and effectiveness of adaptation. In addition, we found that climate data sources were not systematically clearly presented, and that climate uncertainty was hardly accounted for. Moreover, only a small number of studies have assessed the economic impacts of adaptation, especially at farm scale. We conclude that the development of methodologies to evaluate adaptation strategies, considering both complementary adaptations and scales, is essential if relevant information is to be provided to the decision-makers of the wine industry.The process of hybridization occurs in approximately 40% of vascular plants, and this exchange of genetic material between non-conspecific individuals occurs unequally among plant lineages, being more frequent in certain groups such as Opuntia (Cactaceae). This genus is known for multiple taxonomic controversies due to widespread polyploidy and probable hybrid origin of several of its species. Southern Mexico species of this genus have been poorly studied despite their great diversity in regions such as the Tehuacán-Cuicatlán Valley which contains around 12% of recognized Mexico's native Opuntia species. In this work, we focus on testing the hybrid status of two putative hybrids from this region, Opuntia tehuacana and Opuntia pilifera, and estimate if hybridization occurs among sampled southern opuntias using two newly identified nuclear intron markers to construct phylogenetic networks with HyDe and Dsuite and perform invariant analysis under the coalescent model with HyDe and Dsuite. For the test of hybrid origin in O. tehuacana, our results could not recover hybridization as proposed in the literature, but we found introgression into O. tehuacana individuals involving O. decumbens and O. huajuapensis. Regarding O. pilifera, we identified O. decumbens as probable parental species, supported by our analysis, which sustains the previous hybridization hypothesis between Nopalea and Basilares clades. Finally, we suggest new hybridization and introgression cases among southern Mexican species involving O. tehuantepecana and O. depressa as parental species of O. velutina and O. decumbens.Climate adaptation through phenotypic innovation will become the main challenge for plants during global warming. Selleckchem Capivasertib Plants exhibit a plethora of mechanisms to achieve environmental and developmental plasticity by inducing dynamic alterations of gene regulation and by maximizing natural variation through large population sizes. While successful over long evolutionary time scales, most of these mechanisms lack the short-term adaptive responsiveness that global warming will require. Here, we review our current understanding of the epigenetic regulation of plant genomes, with a focus on stress-response mechanisms and transgenerational inheritance. Field and laboratory-scale experiments on plants exposed to stress have revealed a multitude of temporally controlled, mechanistic strategies integrating both genetic and epigenetic changes on the genome level. We analyze inter- and intra-species population diversity to discuss how methylome differences and transposon activation can be harnessed for short-term adaptive efforts to shape co-evolving traits in response to qualitatively new climate conditions and environmental stress.Zanthoxylum L. is an economic crop with a long history of cultivation and domestication and has important economic, ecological, and medicinal value. To solve the classification problems caused by the similar morphological characteristics of Zanthoxylum and establish a credible phylogenetic relationship, we sequenced and annotated six Zanthoxylum chloroplast (cp) genomes (Z. piasezkii, Z. armatum, Z. motuoense, Z. oxyphyllum, Z. multijugum, and Z. calcicola) and combined them with previously published genomes for the Zanthoxylum species. We used bioinformatics methods to analyze the genomic characteristics, contraction, and expansion of inverted repeat (IR) regions; differences in simple sequence repeats (SSRs) and long repeat sequences; species pairwise Ka/Ks ratios; divergence hotspots; and phylogenetic relationships of the 14 Zanthoxylum species. The results revealed that cp genomes of Zanthoxylum range in size from 158,071 to 158,963 bp and contain 87 protein-coding, 37 tRNA, and 8 rRNA genes. Seven mutational hotspots were identified as candidate DNA barcode sequences to distinguish Zanthoxylum species. The phylogenetic analysis strongly supported the genus Fagara as a subgenus of Zanthoxylum and proposed the possibility of a new subgenus in Zanthoxylum. The availability of these genomes will provide valuable information for identifying species, molecular breeding, and evolutionary analysis of Zanthoxylum.Salinity is one of the most impacting abiotic stresses regarding crop productivity and quality. Among the strategies that are attracting attention in the protection of crops from abiotic stresses, there is the use of plant biostimulants. In this study, Megafol (Meg), a commercial plant biostimulant, was tested on olive plants subjected to severe saline stress. Plants treated with salt alone showed substantial reductions in biomass production, leaf net photosynthesis (Pn), leaf transpiration rate (E), stomatal conductance (gs), and relative water content (RWC). In addition, samples stressed with NaCl showed a higher sodium (Na+) content in the leaves, while those stressed with NaCl and biostimulated with Meg increased the potassium (K+) content in the leaves, thus showing a higher K+/Na+ ratio. Salinity caused the accumulation of significant quantities of hydrogen peroxide (H2O2) and malondialdehyde (MDA) due to decreases in the activity of antioxidant enzymes, namely superoxide dismutase (SOD - EC 1.15.1.1), ascorbate peroxidase (APX - EC 1.11.1.11), guaiacol peroxidase (GPX - EC 1.11.1.9), and catalase (CAT - EC 1.11.1.6). When olive plants under saline stress were biostimulated with Meg, the plants recovered and showed physiological and biochemical traits much improved than salt stressed samples. Finally, Meg exhibited Ca2+-chelating activity in olive pollen grains, which allowed the biostimulant to exert this beneficial effect also by antagonizing the undesirable effects of hydrogen peroxide on Ca2+ metabolism.Presently, pearl millet and wheat are belonging to highly important cereal crops. Pearl millet, however, is an under-utilized crop, despite its superior resilience to drought and heat stress in contrast to wheat. To investigate this in more detail, we performed comparative physiological screening and large scale proteomics of drought stress responses in drought-tolerant and susceptible genotypes of pearl millet and wheat. These chosen genotypes are widely used in breeding and farming practices. The physiological responses demonstrated large differences in the regulation of root morphology and photosynthetic machinery, revealing a stay-green phenotype in pearl millet. Subsequent tissue-specific proteome analysis of leaves, roots and seeds led to the identification of 12,558 proteins in pearl millet and wheat under well-watered and stress conditions. To allow for this comparative proteome analysis and to provide a platform for future functional proteomics studies we performed a systematic phylogenetic analysis of all orthologues in pearl millet, wheat, foxtail millet, sorghum, barley, brachypodium, rice, maize, Arabidopsis, and soybean.

Autoři článku: Wanghenderson7405 (Ernstsen Morris)