Donahuefriedman0797

Z Iurium Wiki

Verze z 20. 9. 2024, 20:57, kterou vytvořil Donahuefriedman0797 (diskuse | příspěvky) (Založena nová stránka s textem „This paper demonstrates a high-efficiency vertical grating coupler for the LP01x, LP11ax, and LP11bx modes of a graded-index few-mode fiber. The coupler is…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

This paper demonstrates a high-efficiency vertical grating coupler for the LP01x, LP11ax, and LP11bx modes of a graded-index few-mode fiber. The coupler is composed of a non-uniform straight bidirectional grating that was inverse-designed to address the desired fiber modes, combined with two mode-selective directional couplers and two tapers. The device was fabricated by e-beam lithography with a minimum feature size of 100 nm and presented coupling efficiencies of -3.0 dB, -3.6 dB, and -3.4 dB for the LP01x, LP11ax, and LP11bx modes, respectively. The high efficiency of the proposed CMOS-compatible coupler demonstrates its potential as a key device for high-capacity networks exploiting space division multiplexing on few-mode fibers.So far, the operation of ultrafast bulk laser oscillators based on Yb-doped gain materials and directly emitting few-cycle pulses have been restricted to low optical-to-optical efficiencies and average output powers of only a few milliwatt. This performance limitation can be attributed to the commonly-applied standard collinear pumping scheme in which the optical pump is transmitted through a dichroic mirror whose spectral transmission and dispersion properties severely perturb the oscillating pulse when its optical spectrum extends towards the pump wavelength. In this study, we report on a novel pumping scheme relying on cross polarization that overcomes this challenge. In our concept, the pump transmitting mirror is highly transmissive for the pump light in p-polarization, while it is highly reflective for the laser light in s-polarization over a broad wavelength range, even covering the pump wavelength and beyond. In contrast to a standard thin-film polarizer featuring similar polarization dependent properer laser as pump source, the pump geometry appears also well suited for pumping with laser diodes coupled into multimode fibers. This novel approach opens up new opportunities for compact and cost-efficient high-power few-cycle bulk laser oscillators based on Yb-doped gain materials and can be applied to any gain material with small quantum defect.Robust and efficient light coupling into and out of quantum valley-Hall (QVH) topological interfaces within near-infrared frequencies is demanded in order to be integrated into practical two-dimensional (2D) optical chips. Here, we numerically demonstrate efficient light coupling between a QVH interface and a pair of input/output silicon photonic waveguides in the presence of photonic crystal line defects. When the topological QVH interface is directly end-butt coupled to the silicon waveguides, the input-to-output transmission efficiency is lower than 50% and the exterior boundaries associated with a QVH interface also cause inevitable back-reflections and high-order scatterings, further reducing the transmission efficiency. The transmission efficiency is substantially increased to 95.8% (94.3%) when photonic crystal line defects are introduced between the bridge (zigzag) QVH interface and the waveguides. The buffering line defect mode, with an effective group refractive index between the interface state and the waveguide mode will ease their mode profile conversion. The design we present here brings no fabrication complexity and may be used as a guide for future implementation of on-chip 2D topological photonics.We are presenting the optical ray tracing as well as an experimental prototype of a curved waveguide combiner with pupil expansion for augmented reality (AR) and mixed reality (MR) glasses. The curved waveguide combiner takes advantage of holographic optical elements both for injection and extraction of the image to correct the aberrations introduced during the propagation of light inside the waveguide. The holographic curved combiner presented has a cylindrical outer radius of curvature of 171.45 mm with a field of view of 13° (H) × 16° (V) at a viewing distance of 1 cm with a 5 × horizontal 1 dimension pupil expansion for an eyebox of 6.2 mm × 42.7 mm.The geometric-phase lens (GPLs) with small form factor compared to traditional refractive lenses has been identified as a compelling solution in augmented-/virtual-/mixed-reality (AR/VR/MR) headsets. Formed either with liquid crystals (LCs) or metasurfaces, the GPL is a type of emerging leading technology that implements the arbitrary aspheric phase to realize low loss and minimal ghosting. However, the inherent chromatic abberation (CA) of GPLs can significantly degrade the image quality. A possible solution is the independent spectral phase implementation for RGB. In this work, we propose the design of three types of multi-twist LC based color-selective GPLs (CS-GPLs), exhibiting highly chromatic efficiency spectra with diameter 30 mm, focal length around 41.2~mm, and F -number 1.37. Through theoretical and experimental validation, each type of CS-GPL manifests high diffraction efficiency (>91%) on respective primary color of orthogonal polarization and high transmission on the complementary color of input polarization. The triplet composed by RGB CS-GPLs demonstrates relative contrast ratio and minimal ghosting. The strong color and polarization dependency of CS-GPLs not only provide a novel technique to mitigate CA but also offer more design freedom in the AR/VR/MR polarization and imaging system.The classic Offner spectrometer has the advantages of having a simple structure, light weight, and high imaging quality. It is easily to achieve a fixed spectral resolution but cannot meet usage requirements. Therefore, we present a practical method for designing a spectrometer with variable spectral resolution. Multiple off-axis convex (OAC) gratings are used to replace the convex grating in the classic Offner spectrometer. We derive the principle through ray tracing and establish an optimization process for the basic parameters of multiple OAC gratings. To demonstrate this method, a corresponding system is designed. The results show that a variable spectral resolution, with a variation ratio close to 4, of 0.45-1.91 nm is achieved over a wide bandwidth of 460-900 nm. Additionally, the smile and keystone of the system are well corrected.Segmentation of multiple surfaces in optical coherence tomography (OCT) images is a challenging problem, further complicated by the frequent presence of weak boundaries, varying layer thicknesses, and mutual influence between adjacent surfaces. The traditional graph-based optimal surface segmentation method has proven its effectiveness with its ability to capture various surface priors in a uniform graph model. However, its efficacy heavily relies on handcrafted features that are used to define the surface cost for the "goodness" of a surface. Recently, deep learning (DL) is emerging as a powerful tool for medical image segmentation thanks to its superior feature learning capability. Unfortunately, due to the scarcity of training data in medical imaging, it is nontrivial for DL networks to implicitly learn the global structure of the target surfaces, including surface interactions. This study proposes to parameterize the surface cost functions in the graph model and leverage DL to learn those parameters. The multiple optimal surfaces are then simultaneously detected by minimizing the total surface cost while explicitly enforcing the mutual surface interaction constraints. The optimization problem is solved by the primal-dual interior-point method (IPM), which can be implemented by a layer of neural networks, enabling efficient end-to-end training of the whole network. find more Experiments on spectral-domain optical coherence tomography (SD-OCT) retinal layer segmentation demonstrated promising segmentation results with sub-pixel accuracy.Non-line-of-sight (NLOS) imaging of hidden objects is a challenging yet vital task, facilitating important applications such as rescue operations, medical imaging, and autonomous driving. In this paper, we attempt to develop a computational steady-state NLOS localization framework that works accurately and robustly under various illumination conditions. For this purpose, we build a physical NLOS image acquisition hardware system and a corresponding virtual setup to obtain real-captured and simulated steady-state NLOS images under different ambient illuminations. Then, we utilize the captured NLOS images to train/fine-tune a multi-task convolutional neural network (CNN) architecture to perform simultaneous background illumination correction and NLOS object localization. Evaluation results on both stimulated and real-captured NLOS images demonstrate that the proposed method can effectively suppress severe disturbance caused by the variation of ambient light, significantly improving the accuracy and stability of steady-state NLOS localization using consumer-grade RGB cameras. The proposed method potentially paves the way to develop practical steady-state NLOS imaging solutions for around-the-clock and all-weather operations.A powerful and convenient method for measuring three-dimensional (3D) deformation of moving amoeboid cells will assist the progress of environmental and cytological studies as protists amoebae play a role in the fundamental environmental ecosystem. Here we develop an inexpensive and useful method for measuring 3D deformation of single protists amoeba through binocular microscopy and a newly proposed algorithm of stereo-scopy. From the movies taken from the left and right optical tubes of the binocular microscope, we detect the 3D positions of many intrinsic intracellular vesicles and reconstruct cellular surfaces of amoeboid cells in 3D space. Some observations of sampled behaviors are shown in a single-celled organism of Amoeba proteus. The resultant surface time series is then analyzed to obtain surface velocity, curvature and volume increasing rates of pseudo-pods for characterizing the movements of amoeboid cells. The limitations and errors of this method are also discussed.We present a theoretical study of the characteristics of the frequency-comb structure and coherence via high-order harmonic generation (HHG) driven by the laser pulse trains when the ionization process is pushed from Keldysh multiphoton into tunneling regime. HHG is obtained by solving accurately the time-dependent Schrödinger equation by means of the time-dependent generalized pseudospectral method. We find that the nested comb structures are formed from each harmonic order in the Keldysh multiphoton ionization regime. But it is severely suppressed or even disappeared in the Keldysh tunneling ionization regime. It implies that the temporal coherence of the emitted frequency comb modes is very sensitive to the Keldysh ionization regime. To understand the evolution of frequency-comb structure and coherence, we perform the calculation of the time-dependent ionization probability and the spectral phase of frequency-comb HHG. We find that the frequency-comb HHG driven by the laser pulse trains in the Keldysh multiphoton regime has a good coherence because the ionization probability of the atom driven by each laser pulse is stable, leading to a phase-coherent frequency-comb structure rather than those cases in the Keldysh tunneling regime with high laser intensity. Our results shed light on current interest and significance to the experimental realization of controllable and frequency-comb vacuum-ultraviolet light sources.

Autoři článku: Donahuefriedman0797 (McLamb Tillman)