Mccollumdoherty4439
Raman microspectroscopy as well as Raman photo reveal biomarkers distinct with regard to thoracic aortic aneurysms.
SAFT-γ Mie, a molecular group-contribution equation of state with foundations in the statistical associating fluid theory framework, is a promising means for developing accurate and transferable coarse-grained force fields for complex polymer systems. We recently presented a new approach for incorporating bonded potentials derived from all-atom molecular dynamics simulations into fused-sphere SAFT-γ Mie homopolymer chains by means of a shape factor parameter, which allows for bond distances less than the tangent-sphere value required in conventional SAFT-γ Mie force fields. In this study, we explore the application of the fused-sphere SAFT-γ Mie approach to copolymers. In particular, we demonstrate its capabilities at modeling poly(vinyl alcohol-co-vinyl butyral) (PVB), an important commercial copolymer widely used as an interlayer in laminated safety glass applications. We found that shape factors determined from poly(vinyl alcohol) and poly(vinyl butyral) homopolymers do not in general correctly reproduce random copolymer densities when standard SAFT-γ Mie mixing rules are applied. However, shape factors optimized to reproduce the density of a random copolymer of intermediate composition resulted in a model that accurately represents density across a wide range of chemical compositions. CX-5461 in vivo Our PVB model reproduced copolymer glass transition temperature in agreement with experimental data, but heat capacity was underpredicted. Finally, we demonstrate that atomistic details may be inserted into equilibrated fused-sphere SAFT-γ Mie copolymer melts through a geometric reverse-mapping algorithm.Photoelectron circular dichroism (PECD) in different regimes of multiphoton ionization of fenchone is studied theoretically using the time-dependent single center method. In particular, we investigate the chiral response to the one-color multiphoton or strong-field ionization by circularly polarized 400 nm and 814 nm optical laser pulses or 1850 nm infrared pulse. In addition, the broadband ionization by short coherent circularly polarized 413-1240 nm spanning pulse is considered. Finally, the two-color ionization by the phase-locked 400 nm and 800 nm pulses, which are linearly polarized in mutually orthogonal directions, is investigated. The present computational results on the one-color multiphoton ionization of fenchone are in agreement with the available experimental data. For the ionization of fenchone by broadband and bichromatic pulses, the present theoretical study predicts substantial multiphoton PECDs.The Ã2A1-X̃2B1 electronic transition of the jet-cooled stibino (SbH2 and SbD2) free radical has been observed for the first time using laser induced fluorescence (LIF) detection. The radicals were produced by a pulsed electric discharge through a mixture of stibine (SbH3 or SbD3) in high pressure argon at the exit of a pulsed molecular beam valve. SbH2 exhibits only three LIF bands, assigned as 21 0, 00 0, and 20 1, with a fluorescence lifetime (τ), which decreases from ∼50 ns for 00 to less then 10 ns for 21. LIF transitions to the 00 (τ ∼ 2 µs), 21 (τ ∼ 400 ns), and 22 (τ ∼ 75 ns) upper vibronic states of SbD2 were also observed. High-resolution spectra exhibited large spin-rotation splittings and small resolved antimony hyperfine splittings due to a substantial Fermi contact interaction in the excited state. The experimentally determined rotational constants gave effective molecular structures of r0 ″ = 1.724(2) Å, θ0 ″ = 90.38(7)° and r0 ' = 1.693(6) Å, θ0 ' = 120.6(3)°. The ground state bending vibrational levels up to eight quanta (6404 cm-1) in SbH2 and 12 quanta (6853 cm-1) in SbD2 were measured from dispersed fluorescence spectra. All indications are that SbH2 undergoes a dissociative process at low vibrational energies in the excited electronic state.The physical chemistry of liquid-liquid phase separation (LLPS) of polymer solutions bears directly on the assembly of biologically functional dropletlike bodies from proteins and nucleic acids. These biomolecular condensates include certain extracellular materials and intracellular compartments that are characterized as "membraneless organelles." Analytical theories are a valuable, computationally efficient tool for addressing general principles. LLPS of neutral homopolymers is quite well described by theory, but it has been a challenge to develop general theories for the LLPS of heteropolymers involving charge-charge interactions. Here, we present a theory that combines a random-phase-approximation treatment of polymer density fluctuations and an account of intrachain conformational heterogeneity based on renormalized Kuhn lengths to provide predictions of LLPS properties as a function of pH, salt, and charge patterning along the chain sequence. CX-5461 in vivo Advancing beyond more limited analytical approaches, our LLPS theory is applicable to a wide variety of charged sequences ranging from highly charged polyelectrolytes to neutral or nearly neutral polyampholytes. This theory should be useful in high-throughput screening of protein and other sequences for their LLPS propensities and can serve as a basis for more comprehensive theories that incorporate nonelectrostatic interactions. Experimental ramifications of our theory are discussed.Understanding native point defects is fundamental in order to comprehend the properties of TiO2 anatase in technological applications. The previous first-principles reports of defect-relevant quantities, such as formation energies and charge transition levels, are, however, scattered over a wide range. We perform a comparative study employing different approaches based on semilocal with Hubbard correction (DFT+U) and screened hybrid functionals in order to investigate the dependence defect properties on the employed computational method. While the defects in TiO2 anatase, as in most transition-metal oxides, generally induce the localization of electrons or holes on atomic sites, we notice that, provided an alignment of the valence bands has been performed, the calculated defect formation energies and transition levels using semilocal functionals are in a fair agreement with those obtained using hybrid functionals. A similar conclusion can be reached for the thermochemistry of the Ti-O system and the limit values of the elemental chemical potentials.