Thygesensinger5146

Z Iurium Wiki

Verze z 20. 9. 2024, 19:30, kterou vytvořil Thygesensinger5146 (diskuse | příspěvky) (Založena nová stránka s textem „5% RG with a particle size of 125 μm.As a special polyphenolic compound in oats, the physiological function of oat avenanthramides (AVAs) drives a variety…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

5% RG with a particle size of 125 μm.As a special polyphenolic compound in oats, the physiological function of oat avenanthramides (AVAs) drives a variety of biological activities, and plays an important role in the prevention and treatment of common chronic diseases. In this study, the optimum extraction conditions and structural identification of AVAs from oats was studied. The inhibitory effect of AVAs from oats on advanced glycation end-products (AGEs) in a glucose-casein simulation system was evaluated, and this revealed dose-dependent inhibitory effects. The trapping capacity of AVAs to the α-dicarbonyl compounds of AGE intermediate products was determined by HPLC-MS/MS, and the results indicate that AVA 2c, AVA 2p, and AVA 2f exhibited the ability to capture α-dicarbonyl compounds. More importantly, AVA 2f was found to be more efficient than AVA 2p at inhibiting superoxide anion radical (O2-), hydroxyl radical (OH), and singlet oxygen (1O2) radical generation, which may be the main reason that AVA 2f was more efficient than AVA 2p in AGE inhibition. Thus, this research presents a promising application of AVAs from oats in inhibiting the food-borne AGEs formed in food processing.5-Hydroxymethylfurfural (5-HMF) and furfural (FF) are products of the maillard reaction (MR) in milk powder and their safety is controversial. The concentration changes of 5-HMF and FF after a period of cold storage were determined by high-performance liquid chromatography (HPLC). Then, we compared the toxicity effects of 5-HMF (2, 20, or 200 μM) in milk powder matrix and standard water on the oxidative stress system of zebrafish embryos. The results showed that the concentration of 5-HMF was stable, and the concentration of FF degraded over time. 5-HMF-exposed zebrafish embryos had a LC50 value of 961 μM for 120 h. High-concentration of 5-HMF exposure resulted in developmental toxicity and induced oxidative stress. 5-HMF exposure resulted in low expression of gstr gene at 200 μM in both matrices. Moreover, sod, cat, gstr, and gpxla genes were differentially highly expressed in other groups or showed no significant difference. Residual levels in all groups were well below the exposed dose, with a maximum value of only 0.4‱. These results provided a theoretical basis for understanding the effects of 5-HMF exposure in milk powder matrix on the oxidative stress system and suggested that the presence of 5-HMF in our daily consumption of milk powder does not produce significant toxic effects and need not be overstressed.Whey protein isolate (WPI)-derived bioactive peptide fractions (1-3, 3-5, 5-10, 1-10, and >10 kDa) were for the first time used as emulsifiers in nanoemulsions. The formation and storage stability of WPI bioactive peptide-stabilized nanoemulsions depended on the peptide size, enzyme type, peptide concentration, and storage temperature. The highly bioactive <10 kDa fractions were either poorly surface-active or weak stabilizers in nanoemulsions. The moderately bioactive >10 kDa fractions formed stable nanoemulsions (diameter = 174-196 nm); however, their performance was dependent on the peptide concentration (1-4%) and enzyme type. Overall, nanoemulsions exhibited better storage stability (less droplet growth and creaming) when stored at lower (4 °C) than at higher (25 °C) temperatures. This study has shown that by optimizing peptide size using ultrafiltration, enzyme type and emulsification conditions (emulsifier concentration and storage conditions), stable nanoemulsions can be produced using WPI-derived bioactive peptides, demonstrating the dual-functionality of WPI peptides.Thermal processing of packaged fruit and vegetable products is targeted at eliminating microbial contaminants (related to spoilage or pathogenicity) and extending shelf life using microbial inactivation or/and by reducing enzymatic activity in the food. The conventional process of thermal processing involves sterilization (canning and retorting) and pasteurization. The parameters used to design the thermal processing regime depend on the time (minutes) required to eliminate a known population of bacteria in a given food matrix under specified conditions. However, due to the effect of thermal exposure on the sensitive nutrients such as vitamins or bioactive compounds present in fruits and vegetables, alternative technologies and their combinations are required to minimize nutrient loss. The novel moderate thermal regimes aim to eliminate bacterial contaminants while retaining nutritional quality. This review focuses on the "thermal" processing regimes for fruit and vegetable products, including conventional sterilization and pasteurization as well as mild to moderate thermal techniques such as pressure-assisted thermal sterilization (PATS), microwave-assisted thermal sterilization (MATS) and pulsed electric field (PEF) in combination with thermal treatment as a hurdle approach or a combined regime.Corticosteroids such as Dexamethasone (DEX) are commonly licensed for therapy in meat animals due to their known pharmacological properties. However, their misuse aimed to achieve anabolic effects is often found by National Residues Control Plans. The setup of a complementary "biomarker based" methods to unveil such illicit practices is encouraged by current European legislation. In this study, the combined use of molecular and histological quantitative techniques was applied on formalin fixed paraffin embedded (FFPE) muscle samples to assess the effects of illicit DEX treatment on veal calves. A PCR array, including 28 transcriptional biomarkers related to DEX exposure, was combined with a histochemical analysis of muscle fiber. An analysis based on unsupervised (PCA) and supervised (PLS-DA and Kohonen's SOM) methods, was applied in order to define multivariate models able to classify animals suspected of illicit treatment by DEX. According to the conventional univariate approach, a not-significant reduction in type I fibres was recorded in the DEX-treated group, and only 12 out of 28 targeted genes maintained their expected differential expression, confirming the technical limitations of a quantitative analysis on FFPE samples. However, the multivariate models developed highlighted the possibility to establish complementary screening strategies, particularly when based on transcriptional biomarkers characterised by low expression profiles.Spirulina (Artrhospira platensis) is rich in chlorophylls (CH) and is used as a potential natural additive in the food industry. In this study, the CH content was extracted from spirulina powder after ultrasound treatment. Microcapsules were then prepared at different ratios of gum Arabic (GA) and whey protein isolate (WPI) through freeze-drying to improve the chemical stability of CH. click here As a result, a* and C* values of the microcapsules prepared from GAWPI ratios (37) were -8.94 ± 0.05 and 15.44 ± 0.08, respectively. The GA fraction increased from 1 to 9, and encapsulation efficiency (EE) of microcapsules also increased by 9.62%. Moreover, the absorption peaks of CH at 2927 and 1626 cm-1 in microcapsules emerged as a redshift detected by FT-IR. From SEM images, the morphology of microcapsules changed from broken glassy to irregular porous flake-like structures when the GA ratio increased. In addition, the coated microcapsules (GAWPI = 37) showed the highest DPPH free radical scavenging activity (SADPPH) (56.38 ± 0.19) due to low moisture content and better chemical stability through thermogravimetric analysis (TGA). Conclusively, GA and WPI coacervates as the wall material may improve the stability of CH extracted from spirulina.Although fish are good sources of selenium (Se), an essential trace element for the human body, very limited data exist on Se content in commonly consumed fish in Thailand. Consequently, this study investigated selenium content and the effect of cooking among 10 fish species (5 freshwater and 5 marine) most-commonly consumed by the Thai people. The fish were purchased from three representative wholesale markets within or nearby to Bangkok. All fish species were prepared to determine their edible portions (EP) and moisture contents. Total Se in fresh, boiled, and fried fish were analysed using Inductively Coupled Plasma-Triple Quadrupole-Mass Spectrometry (ICP-QQQ-MS). In general, higher levels of Se were found in marine fish (37.1-198.5 µg/100 g EP in fresh fish, 48.0-154.4 µg/100 g EP in boiled fish, and 52.9-262.4 µg/100 g EP in fried fish) compared to freshwater fish (6.9-29.4 µg/100 g EP in fresh fish, 10.1-26.5 µg/100 g EP in boiled fish, and 13.7-43.8 µg/100 g EP in fried fish). While Longtail tuna showed significantly higher Se content than other fish (p < 0.05), boiled Longtail tuna had significantly lower true retention of Se than the other fish (p < 0.05). Most fish species retained a high level of selenium (ranged 64.1-100.0% true retention in boiling and frying). Longtail tuna, Short-bodied mackerel, Indo-pacific Spanish mackerel, Nile tilapia, and red Nile tilapia-cooked by boiling and frying-are recommended for consumption as excellent sources of selenium.Avocado consumption and trade are increasing worldwide, with North America and Europe being the main importing regions. Spain is the major European avocado producer (90% of the production), yet it only supplies 10% of the market. Consequently, more than 90% of the avocados consumed in Europe are imported from overseas, mainly from Chile and Peru. In this work, the Life Cycle Assessment (LCA) impact associated with the transport of two avocado supply chains (short (Spanish) and long (Chilean)) and the effect of the fruit origin and distance of both chains on primary and secondary metabolites from harvest to edible ripeness were evaluated using a gas chromatography-mass spectrometry (GC-MS) and liquid chromatography coupled to diode array detection (LC-DAD) based metabolite analysis. The LCA transport impact of the fresh supply chain from production centers in Chile (Quillota) and Spain (Malaga), and then the distribution to several cities in Europe, suggested road export from Spain to European capitals to havenot hold in this case, as long as transport conditions are adequate in terms of temperature, atmosphere conditions, and time considering distance from origin to destination.Date (Phoenix dactylifera) seed is a potential source of natural antioxidants, and the use of innovative green and low temperature antioxidant recovery techniques (using CO2 as solvent) such as supercritical fluid (SFE) and subcritical (SubCO2) extractions can improve their yields and quality in the extracts. SFE, SubCO2 and Soxhlet techniques were employed to enrich antioxidants in extracts from Sukari (SKSE), Ambara (AMSE), Majdool (MJSE) and Sagai (SGSE) date seeds. Extract yields were evaluated and modelled for SFE extract using response surface methodology. Significantly higher (p < 0.05) phenolics (143.48-274.98 mg GAE/100 g), flavonoids (78.35-141.78 mg QE/100 g), anthocyanins (0.39-1.00 mg/100 g), and carotenoid (1.42-1.91 mg BCE/100 g) contents were detected in extracts obtained using SFE and SubCO2 methods. The evaluation of in vitro antioxidant properties showed that SFE and SubCO2 seed extracts demonstrated promising antioxidant (13.42-23.83 µg AAE/mL), antiradical (228.76-109.69 µg/mL DPPH IC50), ferric reducing antioxidant power (1.

Autoři článku: Thygesensinger5146 (Glover Halvorsen)