Paaskekarlsen0716

Z Iurium Wiki

Verze z 20. 9. 2024, 18:34, kterou vytvořil Paaskekarlsen0716 (diskuse | příspěvky) (Založena nová stránka s textem „Unfortunately, addition of α-tocopherol or δ-tocopherol to the diet did not restrain inflammation of epididymal fat. Investigation of the anti-inflammato…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Unfortunately, addition of α-tocopherol or δ-tocopherol to the diet did not restrain inflammation of epididymal fat. Investigation of the anti-inflammatory effects of α-tocopherol or δ-tocopherol in co-cultured 3T3-L1 cells and RAW264.7 cells showed that δ-tocopherol inhibited increased gene expression of the inflammatory cytokines, IL-1β, IL-6, and iNOS. These results suggest that an anti-inflammatory effect in the δ-tocopherol is stronger than that in the α-tocopherol in vitro. We intend to perform an experiment by in vivo sequentially in the future.As a valuable natural antioxidant, sesaminol can be used in food and medicine industries, but it is trace in sesame seeds and oil, and it is feasible to prepare sesaminol from sesaminol triglucoside (STG) which is abundant in defatted sesame cake. Therefore, in order to establish an effective enzymatic preparation method and elucidate the antioxidant structure-activity relationship of sesaminol, a suitable glycosidase for preparing sesaminol from STG were screened, enzymatic hydrolysis was optimized by single-factor test and response surface methodology, and finally, the structure-activity relationship of sesaminol was illustrated by comparative molecular field analysis (CoMFA). These results suggested that β-galactosidase was the optimal glycosidase for enzymatic hydrolysis of STG to prepare sesaminol. Under the optimal conditions of a reaction temperature of 50°C, reaction time of 4.0 h, pH of 5.5, substrate concentration of 1.0 mg/mL, and enzyme dosage of 20 mg/mL, the conversion rate of sesaminol was 98.88±0.67%. Sesaminol displayed excellent antioxidant ability in 2,2-diphenyl-1-picrylhydrazyl (DPPH, IC50 = 0.0011 mg/mL), 2,2'-azinobis-(3-ethyl-benzothiazoline-6-sulfonate) (ABTS, IC50 = 0.0021 mg/mL) radical scavenging activities and Ferric reducing antioxidant power (FRAP, 103.2998 mol/g) compared to other sesaminol derivatives. According to -log (IC50 of DPPH) and -log (IC50 of ABTS), CoMFA models were successfully established based on Q2 >0.5 (QDPPH 2 = 0.558, QABTS 2 = 0.534). The active site of sesaminol tended to be located on the hydroxyl group of the benzene ring (R1 position). A positive correlation between the bulky and positively charged groups at the 1H, 3H-furo [3, 4-c] furan group, the small, negatively charged groups at the R1 position and the antioxidant activity of sesaminol. This study provides an effective method to prepare sesaminol, reveals the structure-activity relationship of sesaminol and provides theoretical basis to design the novel compound.This review is aimed to provide a comprehensive overview of the physicochemical properties and extraction processes of red palm oil, its nutritional properties and applications in food. Crude palm oil is firstly extracted from the fruit mesocarp and processed into red palm oil using pre-treatment of crude palm oil, with deacidification steps, and deodorization via short-path distillation. These processes help to retain β-carotene and vitamin E in red palm oil. Palmitic, stearic and myristic acids are the saturated fatty acids in red palm oil, while the unsaturated fatty acids are oleic, linoleic and linolenic acids. It is reported to overcome vitamin A deficiency, promote heart health and have anti-cancer properties.We characterized the adsorption and desorption of α-gel (α-form hydrated crystal) dispersions in aqueous media using a quartz crystal microbalance with dissipation monitoring (QCM-D) technique. The α-gel was formed from a mixture of N-[3-(dimethylamino)propyl]docosanamide (APA-22) L-lactic acid salt, 1-octadecanol (C18OH), and water. The solid substrate employed in this study as a model for hair was silica. The QCM-D measurements revealed that the α-gel dispersions yielded a rigid adsorption film on the negatively charged silica surface. The adsorption mass decreased with decreasing domain size (on the micrometer scale) of the α-gel dispersions. The adsorption film highly restricted the desorption of the α-gel from the silica surface even after rinsing with water. The adsorption film also exhibited excellent lubrication ability in aqueous media both before and after rinsing with water. We expect that the α-gel formed by APA-22 L-lactic acid is a potential ingredient for formulating an environment-friendly hair conditioner owing to its high adsorption, limited desorption, and excellent lubrication abilities on the solid surface.Fatty acids and their derivatives are interesting cosmetic ingredients because they show the selective antibacterial activity against Staphylococcus aureus (S. aureus). However, the antibacterial activity in mixed systems containing several active ingredients is unclear because previous studies focused antibacterial systems containing one kind of fatty acid. In the present study, the minimal inhibitory concentration (MIC) and the fractional inhibitory concentration (FIC) were evaluated for myristic acid/lauric acid, myristic acid/palmitoleic acid, and myristic acid/lactic acid mixed systems to show the effect of the coexisting components on the selective antibacterial activity of myristic acid. In the myristic acid/palmitoleic acid mixed system, the antibacterial activity against S. learn more aureus was enhanced by additive effect, whereas the antibacterial activity was not observed against S. epidermidis. On the other hand, the myristic acid/lauric acid mixed system showed antibacterial activity against S. epidermidis Lauric acid impaired the selectivity of antibacterial activity of myristic acid. These results suggest that the selective activity of myristic acid varies with the additives. The present findings are useful for designing formulations of cosmetics and body cleansers containing myristic acid.A method able to simultaneously obtain oil and defatted meal (rich in proteins) with high quality is preferable to others for processing black sesame seeds, which should also be green, healthy, highly efficient and sustainable. Methods including solvent extraction and hot-pressing currently available for the commercial production of oils are not able to meet all criteria just mentioned above. Therefore, development of new aqueous method of extracting black sesame oil has been promoted. In our study, we developed a new aqueous method using 1.9510 aqueous salt solution-to-ground black sesame seed ratio which simultaneously recovered 96.54% black sesame oils and defatted meal with only 3.89% residual oils and 50.1% proteins (on dry weight basis). The oil produced had low acid value at 0.43 mgKOH/kg and peroxide value 3.37 mmol/kg and good other quality indexes. link2 We found that proper amount of water added was essential for efficiently recover black sesame oils while other factors including temperature and time of baking raw materials to deactivate lipase activity, pore size of the sieve for ground black sesame seeds to pass through, addition of salt as well as temperature and time of agitating significantly affected the recovery efficiency. link3 As compared with other methods, the new aqueous method had higher oil recovery rate or quality and was more environmentally friendly. No waste water was discharged during separation of oils. The experimental data can be applied to guide the design and manufacture of production line of black sesame oilseeds on a pilot or commercial scale.The solubility of hydrogen in n-hexane was determined using a homemade reactor. The solubility of hydrogen in soybean oil was established using the Peng-Robinson (PR) equation of state and the van der Waals mixing rule. The curve equation established a linear relationship between the solubility of hydrogen in oil and the number of moles of hydrogen in the reactor. Under the optimal temperature and catalyst, the relationship between the hydrogen consumption of the hydrogenation of oil and fat and the TFAs formed in the oil was determined. When the reaction pressure exceeded 3.0 MPa, the hydrogenation of oil was consumed. The amount of hydrogen, the rate of hydrogenation, and the change in the TFAs all stabilized. Therefore, the pressure of the general hydrogenation reaction should not exceed 3.0 MPa. This result provides a quick and simple method for controlling TFAs in oils and fats for industrial applications.To overcome the key challenges associated with cement dust, such as inhalable size, toxic ions, and the existence of large quantities of useless materials, researchers investigated an innovative and unusual conversion of toxic cement dust into Mayenite nanoparticles. Mayenite is a natural structure that can be used as a filler in a variety of industrial applications. The formation of Mayenite nanoparticles was achieved through a thermal reaction at 1000°C for 2 h between cement dust and aluminum oxide. Different techniques were used to characterize the synthesized Mayenite nanoparticles, revealing the formation of the target phase as well as the reduction of toxic ions present in cement dust. According to Scherrer's equation, the crystallite size of bypass and synthesized Mayenite nanoparticles is 45 and 30 nm, respectively. Also, with the aid of TEM analysis, the particle size distribution of the produced Mayenite nanoparticles was found to be 27±7 nm. The toxic ions, especially chlorides and sulphates, were reduced by 86% and 50%, respectively, according to X-ray fluorescence results. These findings are important for the future use of Mayenite, 12CaO.7Al2O3 (C12A7), nanoparticles formed from toxic cement dust recycling.The nutritional and structural properties of phytosterols (PS)/phytosterol esters (PEs) facilitate their use as substitutes for cholesterol in liposome encapsulation systems designed for oral drugs and health products. The purpose of this study was to determine the effect of phytosterol butyrate ester (PBE) on the properties of liposomes. PBE was encapsulated within liposomes (approximately 60 nm) prepared using soybean phosphatidylcholine using the thin-film hydration method. There was no significant change in the average particle diameter and zeta potential of these liposomal vesicles corresponding to the increasing amounts of encapsulated PBE. The incorporation of PBE increased the polydispersity index (PDI) independent of concentration. Additionally, we observed that the storage stability of PBE liposomes with uniform particle size and approximately spherical shape vesicle was better at low concentration. The results of Fourier-transform infrared (FTIR) spectroscopy and Raman spectroscopy showed that PBE was positioned at the water interface, which increased the order of hydrophobic alkyl chains in the lipid membranes. The incorporation of PBE led to an increase in the trans conformation of hydrophobic alkyl chain and consequently, the thermal stability of liposomes, which was confirmed by differential scanning calorimetry (DSC). The results of powder X-ray diffraction (XRD) analysis confirmed that PBE was present in an amorphous form in the liposomes. Additionally, the incorporation of PBE reduced the micropolarity of the lipid membrane. Thus, when preparing liposomes using thin-film hydration, the presence of PBE affected the characteristics of liposomes.Background and Purpose The Thyroid Ultrasound Examination (TUE) program is conducted as part of the Fukushima Health Management Survey. Following the established criteria, examinees are called in for a secondary confirmation examination, which may induce high anxiety related to a thyroid cancer for both the examinees and their families. Therefore, Fukushima Medical University created the Thyroid Support Team to reduce anxiety. The purpose of this study is to analyze the psychosocial support for examinees and their families through two types of records, and to clarify the current issues and determine future directions of support.Materials and methods We analyzed 223 records of support for the first visit of examinees who attended the secondary confirmatory examination, conducted at Fukushima Medical University from September 2018 to March 2019.Results During the first visit, frequent topics and questions brought up by the examinees and their families were about the "Thyroid Ultrasound Examination (TUE) program" and "Examination findings".

Autoři článku: Paaskekarlsen0716 (Beasley MacKinnon)